Developing Automatic Speech Recognition (ASR) for low-resource languages is a challenge due to the small amount of transcribed audio data. For many such languages, audio and text are available separately, but not audio with transcriptions. Using text, speech can be synthetically produced via text-to-speech (TTS) systems. However, many low-resource languages do not have quality TTS systems either. We propose an alternative: produce synthetic audio by running text from the target language through a trained TTS system for a higher-resource pivot language. We investigate when and how this technique is most effective in low-resource settings. In our experiments, using several thousand synthetic TTS text-speech pairs and duplicating authentic data to balance yields optimal results. Our findings suggest that searching over a set of candidate pivot languages can lead to marginal improvements and that, surprisingly, ASR performance can by harmed by increases in measured TTS quality. Application of these findings improves ASR by 64.5\% and 45.0\% character error reduction rate (CERR) respectively for two low-resource languages: Guaran\'i and Suba.
The field of continual deep learning is an emerging field and a lot of progress has been made. However, concurrently most of the approaches are only tested on the task of image classification, which is not relevant in the field of intelligent vehicles. Only recently approaches for class-incremental semantic segmentation were proposed. However, all of those approaches are based on some form of knowledge distillation. At the moment there are no investigations on replay-based approaches that are commonly used for object recognition in a continual setting. At the same time while unsupervised domain adaption for semantic segmentation gained a lot of traction, investigations regarding domain-incremental learning in an continual setting is not well-studied. Therefore, the goal of our work is to evaluate and adapt established solutions for continual object recognition to the task of semantic segmentation and to provide baseline methods and evaluation protocols for the task of continual semantic segmentation. We firstly introduce evaluation protocols for the class- and domain-incremental segmentation and analyze selected approaches. We show that the nature of the task of semantic segmentation changes which methods are most effective in mitigating forgetting compared to image classification. Especially, in class-incremental learning knowledge distillation proves to be a vital tool, whereas in domain-incremental learning replay methods are the most effective method.
Large pre-trained language models are successfully being used in a variety of tasks, across many languages. With this ever-increasing usage, the risk of harmful side effects also rises, for example by reproducing and reinforcing stereotypes. However, detecting and mitigating these harms is difficult to do in general and becomes computationally expensive when tackling multiple languages or when considering different biases. To address this, we present FairDistillation: a cross-lingual method based on knowledge distillation to construct smaller language models while controlling for specific biases. We found that our distillation method does not negatively affect the downstream performance on most tasks and successfully mitigates stereotyping and representational harms. We demonstrate that FairDistillation can create fairer language models at a considerably lower cost than alternative approaches.
Representation learning, i.e. the generation of representations useful for downstream applications, is a task of fundamental importance that underlies much of the success of deep neural networks (DNNs). Recently, robustness to adversarial examples has emerged as a desirable property for DNNs, spurring the development of robust training methods that account for adversarial examples. In this paper, we aim to understand how the properties of representations learned by robust training differ from those obtained from standard, non-robust training. This is critical to diagnosing numerous salient pitfalls in robust networks, such as, degradation of performance on benign inputs, poor generalization of robustness, and increase in over-fitting. We utilize a powerful set of tools known as representation similarity metrics, across three vision datasets, to obtain layer-wise comparisons between robust and non-robust DNNs with different training procedures, architectural parameters and adversarial constraints. Our experiments highlight hitherto unseen properties of robust representations that we posit underlie the behavioral differences of robust networks. We discover a lack of specialization in robust networks' representations along with a disappearance of `block structure'. We also find overfitting during robust training largely impacts deeper layers. These, along with other findings, suggest ways forward for the design and training of better robust networks.
Pre-trained language models (PLMs) often take advantage of the monolingual and multilingual dataset that is freely available online to acquire general or mixed domain knowledge before deployment into specific tasks. Extra-large PLMs (xLPLMs) are proposed very recently to claim supreme performances over smaller-sized PLMs such as in machine translation (MT) tasks. These xLPLMs include Meta-AI's wmt21-dense-24-wide-en-X and NLLB. \textit{In this work, we examine if xLPLMs are absolutely superior to smaller-sized PLMs in fine-tuning toward domain-specific MTs.} We use two different in-domain data of different sizes: commercial automotive in-house data and \textbf{clinical} shared task data from the ClinSpEn2022 challenge at WMT2022. We choose popular Marian Helsinki as smaller sized PLM and two massive-sized Mega-Transformers from Meta-AI as xLPLMs. Our experimental investigation shows that 1) on smaller sized in-domain commercial automotive data, xLPLM wmt21-dense-24-wide-en-X indeed shows much better evaluation scores using S\textsc{acre}BLEU and hLEPOR metrics than smaller-sized Marian, even though its score increase rate is lower than Marian after fine-tuning; 2) on relatively larger-size well prepared clinical data fine-tuning, the xLPLM NLLB \textbf{tends to lose} its advantage over smaller-sized Marian on two sub-tasks (clinical terms and ontology concepts) using ClinSpEn offered metrics METEOR, COMET, and ROUGE-L, and totally lost to Marian on Task-1 (clinical cases) on all metrics including S\textsc{acre}BLEU and BLEU; 3) \textbf{metrics do not always agree} with each other on the same tasks using the same model outputs.
Data Augmentation (DA) -- generating extra training samples beyond original training set -- has been widely-used in today's unbiased VQA models to mitigate the language biases. Current mainstream DA strategies are synthetic-based methods, which synthesize new samples by either editing some visual regions/words, or re-generating them from scratch. However, these synthetic samples are always unnatural and error-prone. To avoid this issue, a recent DA work composes new augmented samples by randomly pairing pristine images and other human-written questions. Unfortunately, to guarantee augmented samples have reasonable ground-truth answers, they manually design a set of heuristic rules for several question types, which extremely limits its generalization abilities. To this end, we propose a new Knowledge Distillation based Data Augmentation for VQA, dubbed KDDAug. Specifically, we first relax the requirements of reasonable image-question pairs, which can be easily applied to any question types. Then, we design a knowledge distillation (KD) based answer assignment to generate pseudo answers for all composed image-question pairs, which are robust to both in-domain and out-of-distribution settings. Since KDDAug is a model-agnostic DA strategy, it can be seamlessly incorporated into any VQA architectures. Extensive ablation studies on multiple backbones and benchmarks have demonstrated the effectiveness and generalization abilities of KDDAug.
As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.
Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.
Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC
The notion of "in-domain data" in NLP is often over-simplistic and vague, as textual data varies in many nuanced linguistic aspects such as topic, style or level of formality. In addition, domain labels are many times unavailable, making it challenging to build domain-specific systems. We show that massive pre-trained language models implicitly learn sentence representations that cluster by domains without supervision -- suggesting a simple data-driven definition of domains in textual data. We harness this property and propose domain data selection methods based on such models, which require only a small set of in-domain monolingual data. We evaluate our data selection methods for neural machine translation across five diverse domains, where they outperform an established approach as measured by both BLEU and by precision and recall of sentence selection with respect to an oracle.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.