Clinical needs and technological advances have resulted in increased use of Artificial Intelligence (AI) in clinical decision support. However, such support can introduce new and amplify existing cognitive biases. Through contextual inquiry and interviews, we set out to understand the use of an existing AI support system by ophthalmologists. We identified concerns regarding anchoring bias and a misunderstanding of the AI's capabilities. Following, we evaluated clinicians' perceptions of three bias mitigation strategies as integrated into their existing decision support system. While clinicians recognised the danger of anchoring bias, we identified a concern around the impact of bias mitigation on procedure time. Our participants were divided in their expectations of any positive impact on diagnostic accuracy, stemming from varying reliance on the decision support. Our results provide insights into the challenges of integrating bias mitigation into AI decision support.
Research on residential segregation has been active since the 1950s and originated in a desire to quantify the level of racial/ethnic segregation in the United States. The Index of Concentration at the Extremes (ICE), an operationalization of racialized economic segregation that simultaneously captures spatial, racial, and income polarization, has been a popular topic in public health research, with a particular focus on social epidemiology. However, the construction of the ICE metric usually ignores the spatial autocorrelation that may be present in the data, and it is usually presented without indicating its degree of statistical and spatial uncertainty. To address these issues, we propose reformulating the ICE metric using Bayesian modeling methodologies. We use a simulation study to evaluate the performance of each method by considering various segregation scenarios. The application is based on racialized economic segregation in Georgia, and the proposed modeling approach will help determine whether racialized economic segregation has changed over two non-overlapping time points.
Detection and mitigation of critical web vulnerabilities and attacks like cross-site scripting (XSS), and cross-site request forgery (CSRF) have been a great concern in the field of web security. Such web attacks are evolving and becoming more challenging to detect. Several ideas from different perspectives have been put forth that can be used to improve the performance of detecting these web vulnerabilities and preventing the attacks from happening. Machine learning techniques have lately been used by researchers to defend against XSS and CSRF, and given the positive findings, it can be concluded that it is a promising research direction. The objective of this paper is to briefly report on the research works that have been published in this direction of applying classical and advanced machine learning to identify and prevent XSS and CSRF. The purpose of providing this survey is to address different machine learning approaches that have been implemented, understand the key takeaway of every research, discuss their positive impact and the downsides that persists, so that it can help the researchers to determine the best direction to develop new approaches for their own research and to encourage researchers to focus towards the intersection between web security and machine learning.
Background. Hearing aid technology has proven successful in the rehabilitation of hearing loss, but its performance is still limited in difficult everyday conditions characterized by noise and reverberation. Objectives. Introduction to the current state of hearing aid technology and presentation of the current state of research and future development. Methods. Current literature is analyzed and several specific new developments are presented. Results. Both objective and subjective data from empirical studies show the limitation of current technology. Examples of current research show the potential of machine-learning based algorithms and multi-modal signal processing for improving speech processing and perception, of using virtual reality for improving hearing device fitting and of mobile health technology for improving hearing-health services. Conclusions. Hearing device technology will remain a key factor in the rehabilitation of hearing impairment. New technology such as machine learning, and multi-modal signal processing, virtual reality and mobile health technology will improve speech enhancement, individual fitting and communication training.
AI and ML models have already found many applications in critical domains, such as healthcare and criminal justice. However, fully automating such high-stakes applications can raise ethical or fairness concerns. Instead, in such cases, humans should be assisted by automated systems so that the two parties reach a joint decision, stemming out of their interaction. In this work we conduct an empirical study to identify how uncertainty estimates and model explanations affect users' reliance, understanding, and trust towards a model, looking for potential benefits of bringing the two together. Moreover, we seek to assess how users' behaviour is affected by their own self-confidence in their abilities to perform a certain task, while we also discuss how the latter may distort the outcome of an analysis based on agreement and switching percentages.
Despite growing interest in using large language models (LLMs) in healthcare, current explorations do not assess the real-world utility and safety of LLMs in clinical settings. Our objective was to determine whether two LLMs can serve information needs submitted by physicians as questions to an informatics consultation service in a safe and concordant manner. Sixty six questions from an informatics consult service were submitted to GPT-3.5 and GPT-4 via simple prompts. 12 physicians assessed the LLM responses' possibility of patient harm and concordance with existing reports from an informatics consultation service. Physician assessments were summarized based on majority vote. For no questions did a majority of physicians deem either LLM response as harmful. For GPT-3.5, responses to 8 questions were concordant with the informatics consult report, 20 discordant, and 9 were unable to be assessed. There were 29 responses with no majority on "Agree", "Disagree", and "Unable to assess". For GPT-4, responses to 13 questions were concordant, 15 discordant, and 3 were unable to be assessed. There were 35 responses with no majority. Responses from both LLMs were largely devoid of overt harm, but less than 20% of the responses agreed with an answer from an informatics consultation service, responses contained hallucinated references, and physicians were divided on what constitutes harm. These results suggest that while general purpose LLMs are able to provide safe and credible responses, they often do not meet the specific information need of a given question. A definitive evaluation of the usefulness of LLMs in healthcare settings will likely require additional research on prompt engineering, calibration, and custom-tailoring of general purpose models.
The new regulatory framework proposal on Artificial Intelligence (AI) published by the European Commission establishes a new risk-based legal approach. The proposal highlights the need to develop adequate risk assessments for the different uses of AI. This risk assessment should address, among others, the detection and mitigation of bias in AI. In this work we analyze statistical approaches to measure biases in automatic decision-making systems. We focus our experiments in face recognition technologies. We propose a novel way to measure the biases in machine learning models using a statistical approach based on the N-Sigma method. N-Sigma is a popular statistical approach used to validate hypotheses in general science such as physics and social areas and its application to machine learning is yet unexplored. In this work we study how to apply this methodology to develop new risk assessment frameworks based on bias analysis and we discuss the main advantages and drawbacks with respect to other popular statistical tests.
Clustered federated Multitask learning is introduced as an efficient technique when data is unbalanced and distributed amongst clients in a non-independent and identically distributed manner. While a similarity metric can provide client groups with specialized models according to their data distribution, this process can be time-consuming because the server needs to capture all data distribution first from all clients to perform the correct clustering. Due to resource and time constraints at the network edge, only a fraction of devices {is} selected every round, necessitating the need for an efficient scheduling technique to address these issues. Thus, this paper introduces a two-phased client selection and scheduling approach to improve the convergence speed while capturing all data distributions. This approach ensures correct clustering and fairness between clients by leveraging bandwidth reuse for participants spent a longer time training their models and exploiting the heterogeneity in the devices to schedule the participants according to their delay. The server then performs the clustering depending on predetermined thresholds and stopping criteria. When a specified cluster approximates a stopping point, the server employs a greedy selection for that cluster by picking the devices with lower delay and better resources. The convergence analysis is provided, showing the relationship between the proposed scheduling approach and the convergence rate of the specialized models to obtain convergence bounds under non-i.i.d. data distribution. We carry out extensive simulations, and the results demonstrate that the proposed algorithms reduce training time and improve the convergence speed while equipping every user with a customized model tailored to its data distribution.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.