亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper aims to solve the contact-aware locomotion problem of a soft snake robot by developing bio-inspired contact-aware locomotion controllers. To provide effective contact information for the controllers, we develop a scale-covered sensor structure mimicking natural snakes' scale sensilla. In the design of the control framework, our core contribution is the development of a novel sensory feedback mechanism for the Matsuoka central pattern generator (CPG) network. This mechanism allows the Matsuoka CPG system to work like a "spinal cord" in the whole contact-aware control scheme, which simultaneously takes the stimuli including tonic input signals from the "brain" (a goal-tracking locomotion controller) and sensory feedback signals from the "reflex arc" (the contact reactive controller), and generates rhythmic signals to actuate the soft snake robot to slither through densely allocated obstacles. In the "reflex arc" design, we develop two distinctive types of reactive controllers -- 1) a reinforcement learning (RL) sensor regulator that learns to manipulate the sensory feedback inputs of the CPG system, and 2) a local reflexive sensor-CPG network that directly connects sensor readings and the CPG's feedback inputs in a specific topology. Combining with the locomotion controller and the Matsuoka CPG system, these two reactive controllers facilitate two different contact-aware locomotion control schemes. The two control schemes are tested and evaluated in both simulated and real soft snake robots, showing promising performance in the contact-aware locomotion tasks. The experimental results also validate the advantages of the modified Matsuoka CPG system with a new sensory feedback mechanism for bio-inspired robot controller design.

相關內容

This work proposes novel approaches that jointly design user equipment (UE) association and power control (PC) in a downlink user-centric cell-free massive multiple-input multiple-output (CFmMIMO) network, where each UE is only served by a set of access points (APs) for reducing the fronthaul signalling and computational complexity. In order to maximize the sum spectral efficiency (SE) of the UEs, we formulate a mixed-integer nonconvex optimization problem under constraints on the per-AP transmit power, quality-of-service rate requirements, maximum fronthaul signalling load, and maximum number of UEs served by each AP. In order to solve the formulated problem efficiently, we propose two different schemes according to the different sizes of the CFmMIMO systems. For small-scale CFmMIMO systems, we present a successive convex approximation (SCA) method to obtain a stationary solution and also develop a learning-based method (JointCFNet) to reduce the computational complexity. For large-scale CFmMIMO systems, we propose a low-complexity suboptimal algorithm using accelerated projected gradient (APG) techniques. Numerical results show that our JointCFNet can yield similar performance and significantly decrease the run time compared with the SCA algorithm in small-scale systems. The presented APG approach is confirmed to run much faster than the SCA algorithm in the large-scale system while obtaining an SE performance close to that of the SCA approach. Moreover, the median sum SE of the APG method is up to about 2.8 fold higher than that of the heuristic baseline scheme.

The implementation of complex software systems usually depends on low-level frameworks or third-party libraries. During their evolution, the APIs adding and removing behaviors may cause unexpected compatibility problems. So, precisely analyzing and constructing the framework/ library's API lifecycle model is of great importance. Existing works have proposed the API existence-changing model for defect detection, while not considering the influence of semantic changes in APIs. In some cases, developers will not remove or deprecate APIs but modify their semantics by adding, removing, or modifying their exception-thrown code, which may bring potential defects to upper-level code. Therefore, besides the API existence model, it is also necessary for developers to be concerned with the exception-related code evolution in APIs, which requires the construction of exception-aware API lifecycle models for framework/library projects. To achieve automatic exception-aware API lifecycle model construction, this paper adopts a static analysis technique to extract exception summary information in the framework API code and adopts a multi-step matching strategy to obtain the changing process of exceptions. Then, it generates exception-aware API lifecycle models for the given framework/library project. With this approach, the API lifecycle extraction tool, JavaExP, is implemented, which is based on Java bytecode analysis. Compared to the state-of-the-art tool, JavaExP achieves both a higher F1 score (+60%) and efficiency (+7x), whose precision of exception matching and changing results is 98%. Compared to the exception-unaware API lifecycle modeling on 60 versions, JavaExp can identify 18% times more API changes. Among the 75,433 APIs under analysis, 20% of APIs have changed their exception-throwing behavior at least once after API introduction, which may bring many hidden compatibility issues.

Modeling complementary relationships greatly helps recommender systems to accurately and promptly recommend the subsequent items when one item is purchased. Unlike traditional similar relationships, items with complementary relationships may be purchased successively (such as iPhone and Airpods Pro), and they not only share relevance but also exhibit dissimilarity. Since the two attributes are opposites, modeling complementary relationships is challenging. Previous attempts to exploit these relationships have either ignored or oversimplified the dissimilarity attribute, resulting in ineffective modeling and an inability to balance the two attributes. Since Graph Neural Networks (GNNs) can capture the relevance and dissimilarity between nodes in the spectral domain, we can leverage spectral-based GNNs to effectively understand and model complementary relationships. In this study, we present a novel approach called Spectral-based Complementary Graph Neural Networks (SComGNN) that utilizes the spectral properties of complementary item graphs. We make the first observation that complementary relationships consist of low-frequency and mid-frequency components, corresponding to the relevance and dissimilarity attributes, respectively. Based on this spectral observation, we design spectral graph convolutional networks with low-pass and mid-pass filters to capture the low-frequency and mid-frequency components. Additionally, we propose a two-stage attention mechanism to adaptively integrate and balance the two attributes. Experimental results on four e-commerce datasets demonstrate the effectiveness of our model, with SComGNN significantly outperforming existing baseline models.

The current paradigm of training deep neural networks for classification tasks includes minimizing the empirical risk that pushes the training loss value towards zero, even after the training error has been vanished. In this terminal phase of training, it has been observed that the last-layer features collapse to their class-means and these class-means converge to the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is termed as Neural Collapse (NC). To theoretically understand this phenomenon, recent works employ a simplified unconstrained feature model to prove that NC emerges at the global solutions of the training problem. However, when the training dataset is class-imbalanced, some NC properties will no longer be true. For example, the class-means geometry will skew away from the simplex ETF when the loss converges. In this paper, we generalize NC to imbalanced regime for cross-entropy loss under the unconstrained ReLU feature model. We prove that, while the within-class features collapse property still holds in this setting, the class-means will converge to a structure consisting of orthogonal vectors with different lengths. Furthermore, we find that the classifier weights are aligned to the scaled and centered class-means with scaling factors depend on the number of training samples of each class, which generalizes NC in the class-balanced setting. We empirically prove our results through experiments on practical architectures and dataset.

Deploying end-to-end speech recognition models with limited computing resources remains challenging, despite their impressive performance. Given the gradual increase in model size and the wide range of model applications, selectively executing model components for different inputs to improve the inference efficiency is of great interest. In this paper, we propose a dynamic layer-skipping method that leverages the CTC blank output from intermediate layers to trigger the skipping of the last few encoder layers for frames with high blank probabilities. Furthermore, we factorize the CTC output distribution and perform knowledge distillation on intermediate layers to reduce computation and improve recognition accuracy. Experimental results show that by utilizing the CTC blank, the encoder layer depth can be adjusted dynamically, resulting in 29% acceleration of the CTC model inference with minor performance degradation.

The development of autonomous agents which can interact with other agents to accomplish a given task is a core area of research in artificial intelligence and machine learning. Towards this goal, the Autonomous Agents Research Group develops novel machine learning algorithms for autonomous systems control, with a specific focus on deep reinforcement learning and multi-agent reinforcement learning. Research problems include scalable learning of coordinated agent policies and inter-agent communication; reasoning about the behaviours, goals, and composition of other agents from limited observations; and sample-efficient learning based on intrinsic motivation, curriculum learning, causal inference, and representation learning. This article provides a broad overview of the ongoing research portfolio of the group and discusses open problems for future directions.

Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.

Knowledge graphs capture structured information and relations between a set of entities or items. As such they represent an attractive source of information that could help improve recommender systems. However existing approaches in this domain rely on manual feature engineering and do not allow for end-to-end training. Here we propose knowledge-aware graph neural networks with label smoothness regularization to provide better recommendations. Conceptually, our approach computes user-specific item embeddings by first applying a trainable function that identifies important knowledge graph relationships for a given user. This way we transform the knowledge graph into a user-specific weighted graph and then applies a graph neural network to compute personalized item embeddings. To provide better inductive bias, we use label smoothness, which assumes that adjacent items in the knowledge graph are likely to have similar user relevance labels/scores. Label smoothness provides regularization over edge weights and we prove that it is equivalent to a label propagation scheme on a graph. Finally, we combine knowledge-aware graph neural networks and label smoothness and present the unified model. Experiment results show that our method outperforms strong baselines in four datasets. It also achieves strong performance in the scenario where user-item interactions are sparse.

Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司