Robot-assisted navigation is a perfect example of a class of applications requiring flexible control approaches. When the human is reliable, the robot should concede space to their initiative. When the human makes inappropriate choices the robot controller should kick-in guiding them towards safer paths. Shared authority control is a way to achieve this behaviour by deciding online how much of the authority should be given to the human and how much should be retained by the robot. An open problem is how to evaluate the appropriateness of the human's choices. One possible way is to consider the deviation from an ideal path computed by the robot. This choice is certainly safe and efficient, but it emphasises the importance of the robot's decision and relegates the human to a secondary role. In this paper, we propose a different paradigm: a human's behaviour is correct if, at every time, it bears a close resemblance to what other humans do in similar situations. This idea is implemented through the combination of machine learning and adaptive control. The map of the environment is decomposed into a grid. In each cell, we classify the possible motions that the human executes. We use a neural network classifier to classify the current motion, and the probability score is used as a hyperparameter in the control to vary the amount of intervention. The experiments collected for the paper show the feasibility of the idea. A qualitative evaluation, done by surveying the users after they have tested the robot, shows that the participants preferred our control method over a state-of-the-art visco-elastic control.
Reinforcement learning-based large language models, such as ChatGPT, are believed to have potential to aid human experts in many domains, including healthcare. There is, however, little work on ChatGPT's ability to perform a key task in healthcare: formal, probabilistic medical diagnostic reasoning. This type of reasoning is used, for example, to update a pre-test probability to a post-test probability. In this work, we probe ChatGPT's ability to perform this task. In particular, we ask ChatGPT to give examples of how to use Bayes rule for medical diagnosis. Our prompts range from queries that use terminology from pure probability (e.g., requests for a "posterior probability") to queries that use terminology from the medical diagnosis literature (e.g., requests for a "post-test probability"). We show how the introduction of medical variable names leads to an increase in the number of errors that ChatGPT makes. Given our results, we also show how one can use prompt engineering to facilitate ChatGPT's partial avoidance of these errors. We discuss our results in light of recent commentaries on sensitivity and specificity. We also discuss how our results might inform new research directions for large language models.
Using nonlinear projections and preserving structure in model order reduction (MOR) are currently active research fields. In this paper, we provide a novel differential geometric framework for model reduction on smooth manifolds, which emphasizes the geometric nature of the objects involved. The crucial ingredient is the construction of an embedding for the low-dimensional submanifold and a compatible reduction map, for which we discuss several options. Our general framework allows capturing and generalizing several existing MOR techniques, such as structure preservation for Lagrangian- or Hamiltonian dynamics, and using nonlinear projections that are, for instance, relevant in transport-dominated problems. The joint abstraction can be used to derive shared theoretical properties for different methods, such as an exact reproduction result. To connect our framework to existing work in the field, we demonstrate that various techniques for data-driven construction of nonlinear projections can be included in our framework.
We propose an implementable, feedforward neural network-based structure preserving probabilistic numerical approximation for a generalized obstacle problem describing the value of a zero-sum differential game of optimal stopping with asymmetric information. The target solution depends on three variables: the time, the spatial (or state) variable, and a variable from a standard $(I-1)$-simplex which represents the probabilities with which the $I$ possible configurations of the game are played. The proposed numerical approximation preserves the convexity of the continuous solution as well as the lower and upper obstacle bounds. We show convergence of the fully-discrete scheme to the unique viscosity solution of the continuous problem and present a range of numerical studies to demonstrate its applicability.
Academic challenges comprise effective means for (i) advancing the state of the art, (ii) putting in the spotlight of a scientific community specific topics and problems, as well as (iii) closing the gap for under represented communities in terms of accessing and participating in the shaping of research fields. Competitions can be traced back for centuries and their achievements have had great influence in our modern world. Recently, they (re)gained popularity, with the overwhelming amounts of data that is being generated in different domains, as well as the need of pushing the barriers of existing methods, and available tools to handle such data. This chapter provides a survey of academic challenges in the context of machine learning and related fields. We review the most influential competitions in the last few years and analyze challenges per area of knowledge. The aims of scientific challenges, their goals, major achievements and expectations for the next few years are reviewed.
Agricultural robotics and automation are facing some challenges rooted in the high variability 9 of products, task complexity, crop quality requirement, and dense vegetation. Such a set of 10 challenges demands a more versatile and safe robotic system. Soft robotics is a young yet 11 promising field of research aimed to enhance these aspects of current rigid robots which 12 makes it a good candidate solution for that challenge. In general, it aimed to provide robots 13 and machines with adaptive locomotion (Ansari et al., 2015), safe and adaptive manipulation 14 (Arleo et al., 2020) and versatile grasping (Langowski et al., 2020). But in agriculture, soft 15 robots have been mainly used in harvesting tasks and more specifically in grasping. In this 16 chapter, we review a candidate group of soft grippers that were used for handling and 17 harvesting crops regarding agricultural challenges i.e. safety in handling and adaptability to 18 the high variation of crops. The review is aimed to show why and to what extent soft grippers 19 have been successful in handling agricultural tasks. The analysis carried out on the results 20 provides future directions for the systematic design of soft robots in agricultural tasks.
The Gearhart-Koshy acceleration for the Kaczmarz method for linear systems is a line-search with the unusual property that it does not minimize the residual, but the error. Recently one of the authors generalized the this acceleration from a line-search to a search in affine subspaces. In this paper, we demonstrate that the affine search is a Krylov space method that is neither a CG-type nor a MINRES-type method, and we prove that it is mathematically equivalent with a more canonical Gram-Schmidt-based method. We also investigate what abstract property of the Kaczmarz method enables this type of algorithm, and we conclude with a simple numerical example.
Research and application have used human-AI teaming (HAT) as a new paradigm to develop AI systems. HAT recognizes that AI will function as a teammate instead of simply a tool in collaboration with humans. Effective human-AI teams need to be capable of taking advantage of the unique abilities of both humans and AI while overcoming the known challenges and limitations of each member, augmenting human capabilities, and raising joint performance beyond that of either entity. The National AI Research and Strategic Plan 2023 update has recognized that research programs focusing primarily on the independent performance of AI systems generally fail to consider the functionality that AI must provide within the context of dynamic, adaptive, and collaborative teams and calls for further research on human-AI teaming and collaboration. However, there has been debate about whether AI can work as a teammate with humans. The primary concern is that adopting the "teaming" paradigm contradicts the human-centered AI (HCAI) approach, resulting in humans losing control of AI systems. This article further analyzes the HAT paradigm and the debates. Specifically, we elaborate on our proposed conceptual framework of human-AI joint cognitive systems (HAIJCS) and apply it to represent HAT under the HCAI umbrella. We believe that HAIJCS may help adopt HAI while enabling HCAI. The implications and future work for HAIJCS are also discussed. Insights: AI has led to the emergence of a new form of human-machine relationship: human-AI teaming (HAT), a paradigmatic shift in human-AI systems; We must follow a human-centered AI (HCAI) approach when applying HAT as a new design paradigm; We propose a conceptual framework of human-AI joint cognitive systems (HAIJCS) to represent and implement HAT for developing effective human-AI teaming
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
Message passing Graph Neural Networks (GNNs) provide a powerful modeling framework for relational data. However, the expressive power of existing GNNs is upper-bounded by the 1-Weisfeiler-Lehman (1-WL) graph isomorphism test, which means GNNs that are not able to predict node clustering coefficients and shortest path distances, and cannot differentiate between different d-regular graphs. Here we develop a class of message passing GNNs, named Identity-aware Graph Neural Networks (ID-GNNs), with greater expressive power than the 1-WL test. ID-GNN offers a minimal but powerful solution to limitations of existing GNNs. ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing. To embed a given node, ID-GNN first extracts the ego network centered at the node, then conducts rounds of heterogeneous message passing, where different sets of parameters are applied to the center node than to other surrounding nodes in the ego network. We further propose a simplified but faster version of ID-GNN that injects node identity information as augmented node features. Altogether, both versions of ID-GNN represent general extensions of message passing GNNs, where experiments show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks; 3% accuracy improvement on node and graph classification benchmarks; and 15% ROC AUC improvement on real-world link prediction tasks. Additionally, ID-GNNs demonstrate improved or comparable performance over other task-specific graph networks.