亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Spiking Neural Networks (SNNs) have emerged as a hardware efficient architecture for classification tasks. The challenge of spike-based encoding has been the lack of a universal training mechanism performed entirely using spikes. There have been several attempts to adopt the powerful backpropagation (BP) technique used in non-spiking artificial neural networks (ANN): (1) SNNs can be trained by externally computed numerical gradients. (2) A major advancement towards native spike-based learning has been the use of approximate Backpropagation using spike-time dependent plasticity (STDP) with phased forward/backward passes. However, the transfer of information between such phases for gradient and weight update calculation necessitates external memory and computational access. This is a challenge for standard neuromorphic hardware implementations. In this paper, we propose a stochastic SNN based Back-Prop (SSNN-BP) algorithm that utilizes a composite neuron to simultaneously compute the forward pass activations and backward pass gradients explicitly with spikes. Although signed gradient values are a challenge for spike-based representation, we tackle this by splitting the gradient signal into positive and negative streams. We show that our method approaches BP ANN baseline with sufficiently long spike-trains. Finally, we show that the well-performing softmax cross-entropy loss function can be implemented through inhibitory lateral connections enforcing a Winner Take All (WTA) rule. Our SNN with a 2-layer network shows excellent generalization through comparable performance to ANNs with equivalent architecture and regularization parameters on static image datasets like MNIST, Fashion-MNIST, Extended MNIST, and temporally encoded image datasets like Neuromorphic MNIST datasets. Thus, SSNN-BP enables BP compatible with purely spike-based neuromorphic hardware.

相關內容

MNIST 數據集來(lai)自美(mei)國國家標準(zhun)與(yu)技術研究所, National Institute of Standards and Technology (NIST). 訓(xun)練集 (training set) 由來(lai)自 250 個(ge)不同(tong)(tong)人(ren)手寫的數字構成(cheng), 其(qi)中 50% 是(shi)高中學生, 50% 來(lai)自人(ren)口普查局 (the Census Bureau) 的工作(zuo)人(ren)員. 測(ce)試(shi)集(test set) 也是(shi)同(tong)(tong)樣比例的手寫數字數據。

Prognostic Health Management aims to predict the Remaining Useful Life (RUL) of degrading components/systems utilizing monitoring data. These RUL predictions form the basis for optimizing maintenance planning in a Predictive Maintenance (PdM) paradigm. We here propose a metric for assessing data-driven prognostic algorithms based on their impact on downstream PdM decisions. The metric is defined in association with a decision setting and a corresponding PdM policy. We consider two typical PdM decision settings, namely component ordering and/or replacement planning, for which we investigate and improve PdM policies that are commonly utilized in the literature. All policies are evaluated via the data-based estimation of the long-run expected maintenance cost per unit time, using monitored run-to-failure experiments. The policy evaluation enables the estimation of the proposed metric. We employ the metric as an objective function for optimizing heuristic PdM policies and algorithms' hyperparameters. The effect of different PdM policies on the metric is initially investigated through a theoretical numerical example. Subsequently, we employ four data-driven prognostic algorithms on a simulated turbofan engine degradation problem, and investigate the joint effect of prognostic algorithm and PdM policy on the metric, resulting in a decision-oriented performance assessment of these algorithms.

Recently, large pre-trained multilingual speech models have shown potential in scaling Automatic Speech Recognition (ASR) to many low-resource languages. Some of these models employ language adapters in their formulation, which helps to improve monolingual performance and avoids some of the drawbacks of multi-lingual modeling on resource-rich languages. However, this formulation restricts the usability of these models on code-switched speech, where two languages are mixed together in the same utterance. In this work, we propose ways to effectively fine-tune such models on code-switched speech, by assimilating information from both language adapters at each language adaptation point in the network. We also model code-switching as a sequence of latent binary sequences that can be used to guide the flow of information from each language adapter at the frame level. The proposed approaches are evaluated on three code-switched datasets encompassing Arabic, Mandarin, and Hindi languages paired with English, showing consistent improvements in code-switching performance with at least 10\% absolute reduction in CER across all test sets.

Language models (LMs) have recently flourished in natural language processing and computer vision, generating high-fidelity texts or images in various tasks. In contrast, the current speech generative models are still struggling regarding speech quality and task generalization. This paper presents Vec-Tok Speech, an extensible framework that resembles multiple speech generation tasks, generating expressive and high-fidelity speech. Specifically, we propose a novel speech codec based on speech vectors and semantic tokens. Speech vectors contain acoustic details contributing to high-fidelity speech reconstruction, while semantic tokens focus on the linguistic content of speech, facilitating language modeling. Based on the proposed speech codec, Vec-Tok Speech leverages an LM to undertake the core of speech generation. Moreover, Byte-Pair Encoding (BPE) is introduced to reduce the token length and bit rate for lower exposure bias and longer context coverage, improving the performance of LMs. Vec-Tok Speech can be used for intra- and cross-lingual zero-shot voice conversion (VC), zero-shot speaking style transfer text-to-speech (TTS), speech-to-speech translation (S2ST), speech denoising, and speaker de-identification and anonymization. Experiments show that Vec-Tok Speech, built on 50k hours of speech, performs better than other SOTA models. Code will be available at //github.com/BakerBunker/VecTok .

Introduction: The amount of data generated by original research is growing exponentially. Publicly releasing them is recommended to comply with the Open Science principles. However, data collected from human participants cannot be released as-is without raising privacy concerns. Fully synthetic data represent a promising answer to this challenge. This approach is explored by the French Centre de Recherche en {\'E}pid{\'e}miologie et Sant{\'e} des Populations in the form of a synthetic data generation framework based on Classification and Regression Trees and an original distance-based filtering. The goal of this work was to develop a refined version of this framework and to assess its risk-utility profile with empirical and formal tools, including novel ones developed for the purpose of this evaluation.Materials and Methods: Our synthesis framework consists of four successive steps, each of which is designed to prevent specific risks of disclosure. We assessed its performance by applying two or more of these steps to a rich epidemiological dataset. Privacy and utility metrics were computed for each of the resulting synthetic datasets, which were further assessed using machine learning approaches.Results: Computed metrics showed a satisfactory level of protection against attribute disclosure attacks for each synthetic dataset, especially when the full framework was used. Membership disclosure attacks were formally prevented without significantly altering the data. Machine learning approaches showed a low risk of success for simulated singling out and linkability attacks. Distributional and inferential similarity with the original data were high with all datasets.Discussion: This work showed the technical feasibility of generating publicly releasable synthetic data using a multi-step framework. Formal and empirical tools specifically developed for this demonstration are a valuable contribution to this field. Further research should focus on the extension and validation of these tools, in an effort to specify the intrinsic qualities of alternative data synthesis methods.Conclusion: By successfully assessing the quality of data produced using a novel multi-step synthetic data generation framework, we showed the technical and conceptual soundness of the Open-CESP initiative, which seems ripe for full-scale implementation.

Recovering images corrupted by multiplicative noise is a well known challenging task. Motivated by the success of multiscale hierarchical decomposition methods (MHDM) in image processing, we adapt a variety of both classical and new multiplicative noise removing models to the MHDM form. On the basis of previous work, we further present a tight and a refined version of the corresponding multiplicative MHDM. We discuss existence and uniqueness of solutions for the proposed models, and additionally, provide convergence properties. Moreover, we present a discrepancy principle stopping criterion which prevents recovering excess noise in the multiscale reconstruction. Through comprehensive numerical experiments and comparisons, we qualitatively and quantitatively evaluate the validity of all proposed models for denoising and deblurring images degraded by multiplicative noise. By construction, these multiplicative multiscale hierarchical decomposition methods have the added benefit of recovering many scales of an image, which can provide features of interest beyond image denoising.

While the test-negative design (TND), which is routinely used for monitoring seasonal flu vaccine effectiveness (VE), has recently become integral to COVID-19 vaccine surveillance, it is susceptible to selection bias due to outcome-dependent sampling. Some studies have addressed the identifiability and estimation of causal parameters under the TND, but efficiency bounds for nonparametric estimators of the target parameter under the unconfoundedness assumption have not yet been investigated. We propose a one-step doubly robust and locally efficient estimator called TNDDR (TND doubly robust), which utilizes sample splitting and can incorporate machine learning techniques to estimate the nuisance functions. We derive the efficient influence function (EIF) for the marginal expectation of the outcome under a vaccination intervention, explore the von Mises expansion, and establish the conditions for $\sqrt{n}-$consistency, asymptotic normality and double robustness of TNDDR. The proposed TNDDR is supported by both theoretical and empirical justifications, and we apply it to estimate COVID-19 VE in an administrative dataset of community-dwelling older people (aged $\geq 60$y) in the province of Qu\'ebec, Canada.

Discovering causal relationships from observational data is a fundamental yet challenging task. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which requires data from heterogeneous settings and exploits that causal models are invariant. ICP has been extended to general additive noise models and to nonparametric settings using conditional independence tests. However, the latter often suffer from low power (or poor type I error control) and additive noise models are not suitable for applications in which the response is not measured on a continuous scale, but reflects categories or counts. Here, we develop transformation-model (TRAM) based ICP, allowing for continuous, categorical, count-type, and uninformatively censored responses (these model classes, generally, do not allow for identifiability when there is no exogenous heterogeneity). As an invariance test, we propose TRAM-GCM based on the expected conditional covariance between environments and score residuals with uniform asymptotic level guarantees. For the special case of linear shift TRAMs, we also consider TRAM-Wald, which tests invariance based on the Wald statistic. We provide an open-source R package 'tramicp' and evaluate our approach on simulated data and in a case study investigating causal features of survival in critically ill patients.

The emergence of complex structures in the systems governed by a simple set of rules is among the most fascinating aspects of Nature. The particularly powerful and versatile model suitable for investigating this phenomenon is provided by cellular automata, with the Game of Life being one of the most prominent examples. However, this simplified model can be too limiting in providing a tool for modelling real systems. To address this, we introduce and study an extended version of the Game of Life, with the dynamical process governing the rule selection at each step. We show that the introduced modification significantly alters the behaviour of the game. We also demonstrate that the choice of the synchronization policy can be used to control the trade-off between the stability and the growth in the system.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

北京阿比特科技有限公司