A simultaneously transmitting and reflecting surface (STARS) aided terahertz (THz) communication system is proposed. A novel power consumption model depending on the type and the resolution of individual elements is proposed for the STARS. Then, the system energy efficiency (EE) and spectral efficiency (SE) are maximized in both narrowband and wideband THz systems. 1) For the narrowband system, an iterative algorithm based on penalty dual decomposition is proposed to jointly optimize the hybrid beamforming at the base station (BS) and the independent phase-shift coefficients at the STARS. The proposed algorithm is then extended to the coupled phase-shift STARS. 2) For the wideband system, to eliminate the beam split effect, a time-delay (TD) network implemented by the true-time-delayers is applied in the hybrid beamforming structure. An iterative algorithm based on the quasi-Newton method is proposed to design the coefficients of the TD network. Finally, our numerical results reveal that i) there is a slight performance loss of EE and SE caused by coupled phase shifts of the STARS in both narrowband and wideband systems, and ii) the conventional hybrid beamforming achieved close performance of EE and SE to the full-digital one in the narrowband system, but not in the wideband system where the TD-based hybrid beamforming is more efficient.
The reconfigurable intelligent surface (RIS) is an emerging technology that changes how wireless networks are perceived, therefore its potential benefits and applications are currently under intense research and investigation. In this letter, we focus on electromagnetically consistent models for RISs, by departing from a recently proposed model based on mutually coupled loaded wire dipoles. While existing related research focuses on free-space wireless channels or ignore the interactions between the RIS and the scattering objects present in the propagation environment, we introduce an RIS-aided channel model that is applicable to more realistic scenarios, which include the presence of scattering objects that are modeled as loaded wire dipoles. By adjusting the parameters of the wire dipoles and the loads, the properties of general natural and engineered material objects can be modeled. We introduce a provably convergent and efficient iterative algorithm that jointly optimizes the RIS and base station configurations to maximize the system sum-rate. Extensive numerical results show the net performance improvement provided by the proposed method compared with existing optimization algorithms.
In this note, we prove that the following function space with absolutely convergent Fourier series \[ F_d:=\left\{ f\in L^2([0,1)^d)\:\middle| \: \|f\|:=\sum_{\boldsymbol{k}\in \mathbb{Z}^d}|\hat{f}(\boldsymbol{k})| \max\left(1,\min_{j\in \mathrm{supp}(\boldsymbol{k})}\log |k_j|\right) <\infty \right\}\] with $\hat{f}(\boldsymbol{k})$ being the $\boldsymbol{k}$-th Fourier coefficient of $f$ and $\mathrm{supp}(\boldsymbol{k}):=\{j\in \{1,\ldots,d\}\mid k_j\neq 0\}$ is polynomially tractable for multivariate integration in the worst-case setting. Here polynomial tractability means that the minimum number of function evaluations required to make the worst-case error less than or equal to a tolerance $\varepsilon$ grows only polynomially with respect to $\varepsilon^{-1}$ and $d$. It is important to remark that the function space $F_d$ is unweighted, that is, all variables contribute equally to the norm of functions. Our tractability result is in contrast to those for most of the unweighted integration problems studied in the literature, in which polynomial tractability does not hold and the problem suffers from the curse of dimensionality. Our proof is constructive in the sense that we provide an explicit quasi-Monte Carlo rule that attains a desired worst-case error bound.
This paper explores the use of reconfigurable intelligent surfaces (RIS) in mitigating cross-system interference in spectrum sharing and secure wireless applications. Unlike conventional RIS that can only adjust the phase of the incoming signal and essentially reflect all impinging energy, or active RIS, which also amplify the reflected signal at the cost of significantly higher complexity, noise, and power consumption, an absorptive RIS (ARIS) is considered. An ARIS can in principle modify both the phase and modulus of the impinging signal by absorbing a portion of the signal energy, providing a compromise between its conventional and active counterparts in terms of complexity, power consumption, and degrees of freedom (DoFs). We first use a toy example to illustrate the benefit of ARIS, and then we consider three applications: (1) Spectral coexistence of radar and communication systems, where a convex optimization problem is formulated to minimize the Frobenius norm of the channel matrix from the communication base station to the radar receiver; (2) Spectrum sharing in device-to-device (D2D) communications, where a max-min scheme that maximizes the worst-case signal-to-interference-plus-noise ratio (SINR) among the D2D links is developed and then solved via fractional programming; (3) The physical layer security of a downlink communication system, where the secrecy rate is maximized and the resulting nonconvex problem is solved by a fractional programming algorithm together with a sequential convex relaxation procedure. Numerical results are then presented to show the significant benefit of ARIS in these applications.
The paper introduces DiSProD, an online planner developed for environments with probabilistic transitions in continuous state and action spaces. DiSProD builds a symbolic graph that captures the distribution of future trajectories, conditioned on a given policy, using independence assumptions and approximate propagation of distributions. The symbolic graph provides a differentiable representation of the policy's value, enabling efficient gradient-based optimization for long-horizon search. The propagation of approximate distributions can be seen as an aggregation of many trajectories, making it well-suited for dealing with sparse rewards and stochastic environments. An extensive experimental evaluation compares DiSProD to state-of-the-art planners in discrete-time planning and real-time control of robotic systems. The proposed method improves over existing planners in handling stochastic environments, sensitivity to search depth, sparsity of rewards, and large action spaces. Additional real-world experiments demonstrate that DiSProD can control ground vehicles and surface vessels to successfully navigate around obstacles.
A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for analyzing electromagnetic scattering from dielectric objects with Kerr nonlinearity. The nonlinear constitutive relation that relates electric flux and electric field induced in the scatterer is used as an auxiliary equation that complements TD-EFVIE. The ordinary differential equation system that arises from TD-EFVIE's Schaubert-Wilton-Glisson (SWG)-based discretization is integrated in time using a predictor-corrector method for the unknown expansion coefficients of the electric field. Matrix systems that arise from the SWG-based discretization of the nonlinear constitutive relation and its inverse obtained using the Pade approximant are used to carry out explicit updates of the electric field and the electric flux expansion coefficients at the predictor and the corrector stages of the time integration method. The resulting explicit marching-on-in-time (MOT) scheme does not call for any Newton-like nonlinear solver and only requires solution of sparse and well-conditioned Gram matrix systems at every step. Numerical results show that the proposed explicit MOT-based TD-EFVIE solver is more accurate than the finite-difference time-domain method that is traditionally used for analyzing transient electromagnetic scattering from nonlinear objects.
Traditional deep learning algorithms often fail to generalize when they are tested outside of the domain of the training data. The issue can be mitigated by using unlabeled data from the target domain at training time, but because data distributions can change dynamically in real-life applications once a learned model is deployed, it is critical to create networks robust to unknown and unforeseen domain shifts. In this paper we focus on one of the reasons behind the inability of neural networks to be so: deep networks focus only on the most obvious, potentially spurious, clues to make their predictions and are blind to useful but slightly less efficient or more complex patterns. This behaviour has been identified and several methods partially addressed the issue. To investigate their effectiveness and limits, we first design a publicly available MNIST-based benchmark to precisely measure the ability of an algorithm to find the ''hidden'' patterns. Then, we evaluate state-of-the-art algorithms through our benchmark and show that the issue is largely unsolved. Finally, we propose a partially reversed contrastive loss to encourage intra-class diversity and find less strongly correlated patterns, whose efficiency is demonstrated by our experiments.
In his monograph Chebyshev and Fourier Spectral Methods, John Boyd claimed that, regarding Fourier spectral methods for solving differential equations, ``[t]he virtues of the Fast Fourier Transform will continue to improve as the relentless march to larger and larger [bandwidths] continues''. This paper attempts to further the virtue of the Fast Fourier Transform (FFT) as not only bandwidth is pushed to its limits, but also the dimension of the problem. Instead of using the traditional FFT however, we make a key substitution: a high-dimensional, sparse Fourier transform (SFT) paired with randomized rank-1 lattice methods. The resulting sparse spectral method rapidly and automatically determines a set of Fourier basis functions whose span is guaranteed to contain an accurate approximation of the solution of a given elliptic PDE. This much smaller, near-optimal Fourier basis is then used to efficiently solve the given PDE in a runtime which only depends on the PDE's data compressibility and ellipticity properties, while breaking the curse of dimensionality and relieving linear dependence on any multiscale structure in the original problem. Theoretical performance of the method is established herein with convergence analysis in the Sobolev norm for a general class of non-constant diffusion equations, as well as pointers to technical extensions of the convergence analysis to more general advection-diffusion-reaction equations. Numerical experiments demonstrate good empirical performance on several multiscale and high-dimensional example problems, further showcasing the promise of the proposed methods in practice.
Motivated by the dynamic modeling of relative abundance data in ecology, we introduce a general approach to model time series on the simplex. Our approach is based on a general construction of infinite memory models, called chains with complete connections. Simple conditions ensuring the existence of stationary paths are given for the transition kernel that defines the dynamic. We then study in details two specific examples with a Dirichlet and a multivariate logistic-normal conditional distribution. Inference methods can be based on either likelihood maximization or on some convex criteria that can be used to initialize likelihood optimization. We also give an interpretation of our models in term of additive perturbations on the simplex and relative risk ratios which are useful to analyze abundance data in ecosystems. An illustration concerning the evolution of the distribution of three species of Scandinavian birds is provided.
While 5G networks are being rolled out, the definition of the potential 5G-Advanced features and the identification of disruptive technologies for 6G systems are being addressed by the scientific and academic communities to tackle the challenges that 2030 communication systems will face, such as terabit-capacity and always-on networks. In this framework, it is globally recognised that Non-Terrestrial Networks (NTN) will play a fundamental role in support to a fully connected world, in which physical, human, and digital domains will converge. In this framework, one of the main challenges that NTN have to address is the provision of the high throughput requested by the new ecosystem. In this paper, we focus on Cell-Free Multiple Input Multiple Output (CF-MIMO) algorithms for NTN. In particular: i) we discuss the architecture design supporting centralised and federated CF-MIMO in NTN, with the latter implementing distributed MIMO algorithms from multiple satellites in the same formation (swarm); ii) propose a novel location-based CF-MIMO algorithm, which does not require Channel State Information (CSI) at the transmitter; and iii) design novel normalisation approaches for federated CF-MIMO in NTN, to cope with the constraints on non-colocated radiating elements. The numerical results substantiate the good performance of the proposed algorithm, also in the presence of non-ideal information.
In this paper, we aim to secure the D2D communication of the D2D-underlaid cellular network by leveraging covert communication to hide its presence from the vigilant adversary. In particular, there are adversaries aiming to detect D2D communications based on their received signal powers. To avoid being detected, the legitimate entity, i.e., D2D-underlaid cellular network, performs power control so as to hide the presence of the D2D communication. We model the combat between the adversaries and the legitimate entity as a two-stage Stackelberg game. Therein, the adversaries are the followers and aim to minimize their detection errors at the lower stage while the legitimate entity is the leader and aims to maximize its utility constrained by the D2D communication covertness and the cellular quality of service (QoS) at the upper stage. Different from the conventional works, the study of the combat is conducted from the system-level perspective, where the scenario that a large-scale D2D-underlaid cellular network threatened by massive spatially distributed adversaries is considered and the network spatial configuration is modeled by stochastic geometry. We obtain the adversary's optimal strategy as the best response from the lower stage and also both analytically and numerically verify its optimality. Taking into account the best response from the lower stage, we design a bi-level algorithm based on the successive convex approximation (SCA) method to search for the optimal strategy of the legitimate entity, which together with the best response from the lower stage constitute the Stackelberg equilibrium. Numerical results are presented to evaluate the network performance and reveal practical insights that instead of improving the legitimate utility by strengthening the D2D link reliability, increasing D2D transmission power will degrade it due to the security concern.