We study empirical Bayes estimation in high-dimensional linear regression. To facilitate computationally efficient estimation of the underlying prior, we adopt a variational empirical Bayes approach, introduced originally in Carbonetto and Stephens (2012) and Kim et al. (2022). We establish asymptotic consistency of the nonparametric maximum likelihood estimator (NPMLE) and its (computable) naive mean field variational surrogate under mild assumptions on the design and the prior. Assuming, in addition, that the naive mean field approximation has a dominant optimizer, we develop a computationally efficient approximation to the oracle posterior distribution, and establish its accuracy under the 1-Wasserstein metric. This enables computationally feasible Bayesian inference; e.g., construction of posterior credible intervals with an average coverage guarantee, Bayes optimal estimation for the regression coefficients, estimation of the proportion of non-nulls, etc. Our analysis covers both deterministic and random designs, and accommodates correlations among the features. To the best of our knowledge, this provides the first rigorous nonparametric empirical Bayes method in a high-dimensional regression setting without sparsity.
Recent work has proposed explicitly inducing language-wise modularity in multilingual LMs via sparse fine-tuning (SFT) on per-language subnetworks as a means of better guiding cross-lingual sharing. In this work, we investigate (1) the degree to which language-wise modularity naturally arises within models with no special modularity interventions, and (2) how cross-lingual sharing and interference differ between such models and those with explicit SFT-guided subnetwork modularity. To quantify language specialization and cross-lingual interaction, we use a Training Data Attribution method that estimates the degree to which a model's predictions are influenced by in-language or cross-language training examples. Our results show that language-specialized subnetworks do naturally arise, and that SFT, rather than always increasing modularity, can decrease language specialization of subnetworks in favor of more cross-lingual sharing.
Spectral bounds form a powerful tool to estimate the minimum distances of quasi-cyclic codes. They generalize the defining set bounds of cyclic codes to those of quasi-cyclic codes. Based on the eigenvalues of quasi-cyclic codes and the corresponding eigenspaces, we provide an improved spectral bound for quasi-cyclic codes. Numerical results verify that the improved bound outperforms the Jensen bound in almost all cases. Based on the improved bound, we propose a general construction of quasi-cyclic codes with excellent designed minimum distances. For the quasi-cyclic codes produced by this general construction, the improved spectral bound is always sharper than the Jensen bound.
Recent works have shown considerable improvements in task-oriented dialogue (TOD) systems by utilizing pretrained large language models (LLMs) in an end-to-end manner. However, the biased behavior of each component in a TOD system and the error propagation issue in the end-to-end framework can lead to seriously biased TOD responses. Existing works of fairness only focus on the total bias of a system. In this paper, we propose a diagnosis method to attribute bias to each component of a TOD system. With the proposed attribution method, we can gain a deeper understanding of the sources of bias. Additionally, researchers can mitigate biased model behavior at a more granular level. We conduct experiments to attribute the TOD system's bias toward three demographic axes: gender, age, and race. Experimental results show that the bias of a TOD system usually comes from the response generation model.
Solving partially observable Markov decision processes (POMDPs) with high dimensional and continuous observations, such as camera images, is required for many real life robotics and planning problems. Recent researches suggested machine learned probabilistic models as observation models, but their use is currently too computationally expensive for online deployment. We deal with the question of what would be the implication of using simplified observation models for planning, while retaining formal guarantees on the quality of the solution. Our main contribution is a novel probabilistic bound based on a statistical total variation distance of the simplified model. We show that it bounds the theoretical POMDP value w.r.t. original model, from the empirical planned value with the simplified model, by generalizing recent results of particle-belief MDP concentration bounds. Our calculations can be separated into offline and online parts, and we arrive at formal guarantees without having to access the costly model at all during planning, which is also a novel result. Finally, we demonstrate in simulation how to integrate the bound into the routine of an existing continuous online POMDP solver.
Despite making significant progress in multi-modal tasks, current Multi-modal Large Language Models (MLLMs) encounter the significant challenge of hallucination, which may lead to harmful consequences. Therefore, evaluating MLLMs' hallucinations is becoming increasingly important in model improvement and practical application deployment. Previous works are limited in high evaluation costs (e.g., relying on humans or advanced LLMs) and insufficient evaluation dimensions (e.g., types of hallucination and task). In this paper, we propose an LLM-free multi-dimensional benchmark AMBER, which can be used to evaluate both generative task and discriminative task including object existence, object attribute and object relation hallucination. Based on AMBER, we design a low-cost and efficient evaluation pipeline. Additionally, we conduct a comprehensive evaluation and detailed analysis of mainstream MLLMs including GPT-4V(ision), and also give guideline suggestions for mitigating hallucinations. The data and code of AMBER are available at //github.com/junyangwang0410/AMBER.
We study a synthetic corpus based approach for language models (LMs) to acquire logical deductive reasoning ability. The previous studies generated deduction examples using specific sets of deduction rules. However, these rules were limited or otherwise arbitrary, limiting the generalizability of acquired reasoning ability. We rethink this and adopt a well-grounded set of deduction rules based on formal logic theory, which can derive any other deduction rules when combined in a multistep way. Then, using the proposed corpora, which we name FLD (Formal Logic Deduction), we first evaluate and analyze the logical reasoning ability of the latest LLMs. Even GPT-4 can solve only half of the problems, suggesting that pure logical reasoning isolated from knowledge is still challenging for the LLMs, and additional training specialized in logical reasoning is indeed essential. We next empirically verify that LMs trained on FLD corpora acquire more generalizable reasoning ability. Furthermore, we identify the aspects of reasoning ability on which deduction corpora can enhance LMs and those on which they cannot, and discuss future directions on each aspect. The released corpora serve both as learning resources and as challenging benchmarks.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.
We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.