亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

High demand for painters is required nowadays and foreseen in the near future for both developed and developing countries. To satisfy such demand, this paper presents the detailed computer aided design (CAD) model of a fully functional wall painting robot for interior finishes. The RoboPainter is capable of performing full scale wall-ceil painting in addition to decorative wall drawings. The 8 degrees of freedom (DOF) mobile robot structure consists of a 6DOF spray painting arm mounted on a 2DOF differentially driven mobile base. The design presented endows several achievements in terms of total robot mass and painting rate as compared to existing literature. Detailed dynamic model parameters are presented to allow for further enhancement in terms of robot motion control.

相關內容

機(ji)器(qi)人(英語:Robot)包(bao)括一切(qie)模(mo)擬人類行(xing)(xing)為或(huo)思想(xiang)與模(mo)擬其他(ta)生物的機(ji)械(如機(ji)器(qi)狗,機(ji)器(qi)貓(mao)等)。狹義上對機(ji)器(qi)人的定義還有很多分類法及爭議,有些電(dian)腦(nao)程(cheng)序甚至也被稱為機(ji)器(qi)人。在當代工(gong)(gong)業中,機(ji)器(qi)人指能自動運行(xing)(xing)任務的人造(zao)機(ji)器(qi)設備,用以取代或(huo)協(xie)助(zhu)人類工(gong)(gong)作(zuo),一般會是機(ji)電(dian)設備,由計算機(ji)程(cheng)序或(huo)是電(dian)子(zi)電(dian)路控制。

知識薈萃

精(jing)品入門和進階(jie)教程、論文和代碼整理等

更多

查(cha)看相(xiang)關VIP內容、論文、資(zi)訊等(deng)

We propose a diffusion approximation method to the continuous-state Markov Decision Processes (MDPs) that can be utilized to address autonomous navigation and control in unstructured off-road environments. In contrast to most decision-theoretic planning frameworks that assume fully known state transition models, we design a method that eliminates such a strong assumption that is often extremely difficult to engineer in reality. We first take the second-order Taylor expansion of the value function. The Bellman optimality equation is then approximated by a partial differential equation, which only relies on the first and second moments of the transition model. By combining the kernel representation of the value function, we design an efficient policy iteration algorithm whose policy evaluation step can be represented as a linear system of equations characterized by a finite set of supporting states. We first validate the proposed method through extensive simulations in 2D obstacle avoidance and 2.5D terrain navigation problems. The results show that the proposed approach leads to a much superior performance over several baselines. We then develop a system that integrates our decision-making framework with onboard perception and conduct real-world experiments in both cluttered indoor and unstructured outdoor environments. The results from the physical systems further demonstrate the applicability of our method in challenging real-world environments.

The interest in network analysis of bibliographic data has grown substantially in recent years, yet comprehensive statistical models for examining the complete dynamics of scientific networks based on bibliographic data are generally lacking. Current empirical studies often focus on models restricting analysis either to paper citation networks (paper-by-paper) or author networks (author-by-author). However, such networks encompass not only direct connections between papers, but also indirect relationships between the references of papers connected by a citation link. In this paper, we extend recently developed relational hyperevent models (RHEM) for analyzing scientific networks. We introduce new covariates representing theoretically meaningful and empirically interesting sub-network configurations. The model accommodates testing hypotheses considering: (i) the polyadic nature of scientific publication events, and (ii) the interdependencies between authors and references of current and prior papers. We implement the model using purpose-built, publicly available open-source software, demonstrating its empirical value in an analysis of a large publicly available scientific network dataset. Assessing the relative strength of various effects reveals that both the hyperedge structure of publication events, as well as the interconnection between authors and references significantly improve our understanding and interpretation of collaborative scientific production.

In this paper, we consider the numerical approximation of a time-fractional stochastic Cahn--Hilliard equation driven by an additive fractionally integrated Gaussian noise. The model involves a Caputo fractional derivative in time of order $\alpha\in(0,1)$ and a fractional time-integral noise of order $\gamma\in[0,1]$. The numerical scheme approximates the model by a piecewise linear finite element method in space and a convolution quadrature in time (for both time-fractional operators), along with the $L^2$-projection for the noise. We carefully investigate the spatially semidiscrete and fully discrete schemes, and obtain strong convergence rates by using clever energy arguments. The temporal H\"older continuity property of the solution played a key role in the error analysis. Unlike the stochastic Allen--Cahn equation, the presence of the unbounded elliptic operator in front of the cubic nonlinearity in the underlying model adds complexity and challenges to the error analysis. To overcome these difficulties, several new techniques and error estimates are developed. The study concludes with numerical examples that validate the theoretical findings.

In this paper, a fifth-order moment-based Hermite weighted essentially non-oscillatory scheme with unified stencils (termed as HWENO-U) is proposed for hyperbolic conservation laws. The main idea of the HWENO-U scheme is to modify the first-order moment by a HWENO limiter only in the time discretizations using the same information of spatial reconstructions, in which the limiter not only overcomes spurious oscillations well, but also ensures the stability of the fully-discrete scheme. For the HWENO reconstructions, a new scale-invariant nonlinear weight is designed by incorporating only the integral average values of the solution, which keeps all properties of the original one while is more robust for simulating challenging problems with sharp scale variations. Compared with previous HWENO schemes, the advantages of the HWENO-U scheme are: (1) a simpler implemented process involving only a single HWENO reconstruction applied throughout the entire procedures without any modifications for the governing equations; (2) increased efficiency by utilizing the same candidate stencils, reconstructed polynomials, and linear and nonlinear weights in both the HWENO limiter and spatial reconstructions; (3) reduced problem-specific dependencies and improved rationality, as the nonlinear weights are identical for the function $u$ and its non-zero multiple $\zeta u$. Besides, the proposed scheme retains the advantages of previous HWENO schemes, including compact reconstructed stencils and the utilization of artificial linear weights. Extensive benchmarks are carried out to validate the accuracy, efficiency, resolution, and robustness of the proposed scheme.

We investigate the ill-posed inverse problem of recovering unknown spatially dependent parameters in nonlinear evolution PDEs. We propose a bi-level Landweber scheme, where the upper-level parameter reconstruction embeds a lower-level state approximation. This can be seen as combining the classical reduced setting and the newer all-at-once setting, allowing us to, respectively, utilize well-posedness of the parameter-to-state map, and to bypass having to solve nonlinear PDEs exactly. Using this, we derive stopping rules for lower- and upper-level iterations and convergence of the bi-level method. We discuss application to parameter identification for the Landau-Lifshitz-Gilbert equation in magnetic particle imaging.

In this article we consider an aggregate loss model with dependent losses. The losses occurrence process is governed by a two-state Markovian arrival process (MAP2), a Markov renewal process process that allows for (1) correlated inter-losses times, (2) non-exponentially distributed inter-losses times and, (3) overdisperse losses counts. Some quantities of interest to measure persistence in the loss occurrence process are obtained. Given a real operational risk database, the aggregate loss model is estimated by fitting separately the inter-losses times and severities. The MAP2 is estimated via direct maximization of the likelihood function, and severities are modeled by the heavy-tailed, double-Pareto Lognormal distribution. In comparison with the fit provided by the Poisson process, the results point out that taking into account the dependence and overdispersion in the inter-losses times distribution leads to higher capital charges.

Transformers are widely used to extract semantic meanings from input tokens, yet they usually operate as black-box models. In this paper, we present a simple yet informative decomposition of hidden states (or embeddings) of trained transformers into interpretable components. For any layer, embedding vectors of input sequence samples are represented by a tensor $\boldsymbol{h} \in \mathbb{R}^{C \times T \times d}$. Given embedding vector $\boldsymbol{h}_{c,t} \in \mathbb{R}^d$ at sequence position $t \le T$ in a sequence (or context) $c \le C$, extracting the mean effects yields the decomposition \[ \boldsymbol{h}_{c,t} = \boldsymbol{\mu} + \mathbf{pos}_t + \mathbf{ctx}_c + \mathbf{resid}_{c,t} \] where $\boldsymbol{\mu}$ is the global mean vector, $\mathbf{pos}_t$ and $\mathbf{ctx}_c$ are the mean vectors across contexts and across positions respectively, and $\mathbf{resid}_{c,t}$ is the residual vector. For popular transformer architectures and diverse text datasets, empirically we find pervasive mathematical structure: (1) $(\mathbf{pos}_t)_{t}$ forms a low-dimensional, continuous, and often spiral shape across layers, (2) $(\mathbf{ctx}_c)_c$ shows clear cluster structure that falls into context topics, and (3) $(\mathbf{pos}_t)_{t}$ and $(\mathbf{ctx}_c)_c$ are mutually nearly orthogonal. We argue that smoothness is pervasive and beneficial to transformers trained on languages, and our decomposition leads to improved model interpretability.

When applying Hamiltonian operator splitting methods for the time integration of multi-species Vlasov-Maxwell-Landau systems, the reliable and efficient numerical approximation of the Landau equation represents a fundamental component of the entire algorithm. Substantial computational issues arise from the treatment of the physically most relevant three-dimensional case with Coulomb interaction. This work is concerned with the introduction and numerical comparison of novel approaches for the evaluation of the Landau collision operator. In the spirit of collocation, common tools are the identification of fundamental integrals, series expansions of the integral kernel and the density function on the main part of the velocity domain, and interpolation as well as quadrature approximation nearby the singularity of the kernel. Focusing on the favourable choice of the Fourier spectral method, their practical implementation uses the reduction to basic integrals, fast Fourier techniques, and summations along certain directions. Moreover, an important observation is that a significant percentage of the overall computational effort can be transferred to precomputations which are independent of the density function. For the purpose of exposition and numerical validation, the cases of constant, regular, and singular integral kernels are distinguished, and the procedure is adapted accordingly to the increasing complexity of the problem. With regard to the time integration of the Landau equation, the most expedient approach is applied in such a manner that the conservation of mass is ensured.

This work studies a parabolic-ODE PDE's system which describes the evolution of the physical capital "$k$" and technological progress "$A$", using a meshless in one and two dimensional bounded domain with regular boundary. The well-known Solow model is extended by considering the spatial diffusion of both capital anf technology. Moreover, we study the case in which no spatial diffusion of the technology progress occurs. For such models, we propound schemes based on the Generalized Finite Difference method and proof the convergence of the numerical solution to the continuous one. Several examples show the dynamics of the model for a wide range of parameters. These examples illustrate the accuary of the numerical method.

Forecasts for key macroeconomic variables are almost always made simultaneously by the same organizations, presented together, and used together in policy analyses and decision-makings. It is therefore important to know whether the forecasters are skillful enough to forecast the future values of those variables. Here a method for joint evaluation of skill in directional forecasts of multiple variables is introduced. The method is simple to use and does not rely on complicated assumptions required by the conventional statistical methods for measuring accuracy of directional forecast. The data on GDP growth and inflation forecasts of three organizations from Thailand, namely, the Bank of Thailand, the Fiscal Policy Office, and the Office of the National Economic and Social Development Council as well as the actual data on GDP growth and inflation of Thailand between 2001 and 2021 are employed in order to demonstrate how the method could be used to evaluate the skills of forecasters in practice. The overall results indicate that these three organizations are somewhat skillful in forecasting the direction-of-changes of GDP growth and inflation when no band and a band of +/- 1 standard deviation of the forecasted outcome are considered. However, when a band of +/- 0.5% of the forecasted outcome is introduced, the skills in forecasting the direction-of-changes of GDP growth and inflation of these three organizations are, at best, little better than intelligent guess work.

北京阿比特科技有限公司