In the pursuit of efficient optimization of expensive-to-evaluate systems, this paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization. Traditional optimization methods, while effective, often encounter prohibitively high costs in multi-dimensional optimizations of one or more objectives. Multi-fidelity approaches offer potential remedies by utilizing multiple, less costly information sources, such as low-resolution simulations. However, integrating these two strategies presents a significant challenge. We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources. Our method modifies a multi-objective optimization policy to incorporate the trust gain per evaluation cost as one objective in a Pareto optimization problem, enabling simultaneous MOMF at lower costs. We present and compare two MOMF optimization methods: a holistic approach selecting both the input parameters and the trust parameter jointly, and a sequential approach for benchmarking. Through benchmarks on synthetic test functions, our approach is shown to yield significant cost reductions - up to an order of magnitude compared to pure multi-objective optimization. Furthermore, we find that joint optimization of the trust and objective domains outperforms addressing them in sequential manner. We validate our results using the use case of optimizing laser-plasma acceleration simulations, demonstrating our method's potential in Pareto optimization of high-cost black-box functions. Implementing these methods in existing Bayesian frameworks is simple, and they can be readily extended to batch optimization. With their capability to handle various continuous or discrete fidelity dimensions, our techniques offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
This paper introduces the "GPT-in-the-loop" approach, a novel method combining the advanced reasoning capabilities of Large Language Models (LLMs) like Generative Pre-trained Transformers (GPT) with multiagent (MAS) systems. Venturing beyond traditional adaptive approaches that generally require long training processes, our framework employs GPT-4 for enhanced problem-solving and explanation skills. Our experimental backdrop is the smart streetlight Internet of Things (IoT) application. Here, agents use sensors, actuators, and neural networks to create an energy-efficient lighting system. By integrating GPT-4, these agents achieve superior decision-making and adaptability without the need for extensive training. We compare this approach with both traditional neuroevolutionary methods and solutions provided by software engineers, underlining the potential of GPT-driven multiagent systems in IoT. Structurally, the paper outlines the incorporation of GPT into the agent-driven Framework for the Internet of Things (FIoT), introduces our proposed GPT-in-the-loop approach, presents comparative results in the IoT context, and concludes with insights and future directions.
This paper addresses the optimization problem to maximize the total costs that can be shared among a group of agents, while maintaining stability in the sense of the core constraints of a cooperative transferable utility game, or TU game. When maximizing total shareable costs, the cost shares must satisfy all constraints that define the core of a TU game, except for being budget balanced. The paper first gives a fairly complete picture of the computational complexity of this optimization problem, its relation to optimiztion over the core itself, and its equivalence to other, minimal core relaxations that have been proposed earlier. We then address minimum cost spanning tree (MST) games as an example for a class of cost sharing games with non-empty core. While submodular cost functions yield efficient algorithms to maximize shareable costs, MST games have cost functions that are subadditive, but generally not submodular. Nevertheless, it is well known that cost shares in the core of MST games can be found efficiently. In contrast, we show that the maximization of shareable costs is NP-hard for MST games and derive a 2-approximation algorithm. Our work opens several directions for future research.
To improve the performance in identifying the faults under strong noise for rotating machinery, this paper presents a dynamic feature reconstruction signal graph method, which plays the key role of the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including coefficient matrix. Then, with originally defined two feature extraction factors MDD and DDD, a dynamic feature selection method based on L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, enabling each sub-signal to take adaptive signal reconstruction. Next the coefficient matrices of the optimal feature sub-bands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2D-Convolutional neural network (2D-CNN). Experimental results on a public data platform of a bearing and our laboratory platform of robot grinding show that this method is better than the existing methods under different noise intensities.
In this paper, we propose a feature affinity (FA) assisted knowledge distillation (KD) method to improve quantization-aware training of deep neural networks (DNN). The FA loss on intermediate feature maps of DNNs plays the role of teaching middle steps of a solution to a student instead of only giving final answers in the conventional KD where the loss acts on the network logits at the output level. Combining logit loss and FA loss, we found that the quantized student network receives stronger supervision than from the labeled ground-truth data. The resulting FAQD is capable of compressing model on label-free data, which brings immediate practical benefits as pre-trained teacher models are readily available and unlabeled data are abundant. In contrast, data labeling is often laborious and expensive. Finally, we propose a fast feature affinity (FFA) loss that accurately approximates FA loss with a lower order of computational complexity, which helps speed up training for high resolution image input.
The paper proposes a novel End-to-End Learning and Repair (E2ELR) architecture for training optimization proxies for economic dispatch problems. E2ELR combines deep neural networks with closed-form, differentiable repair layers, thereby integrating learning and feasibility in an end-to-end fashion. E2ELR is also trained with self-supervised learning, removing the need for labeled data and the solving of numerous optimization problems offline. E2ELR is evaluated on industry-size power grids with tens of thousands of buses using an economic dispatch that co-optimizes energy and reserves. The results demonstrate that the self-supervised E2ELR achieves state-of-the-art performance, with optimality gaps that outperform other baselines by at least an order of magnitude.
This paper proposes an elegant optimization framework consisting of a mix of linear-matrix-inequality and second-order-cone constraints. The proposed framework generalizes the semidefinite relaxation (SDR) enabled solution to the typical transmit beamforming problems presented in the form of quadratically constrained quadratic programs (QCQPs) in the literature. It is proved that the optimization problems subsumed under the framework always admit a rank-one optimal solution when they are feasible and their optimal solutions are not trivial. This finding indicates that the relaxation is tight as the optimal solution of the original beamforming QCQP can be straightforwardly obtained from that of the SDR counterpart without any loss of optimality. Four representative examples of transmit beamforming, i.e., transmit beamforming with perfect channel state information (CSI), transmit beamforming with imperfect CSI, chance-constraint approach for imperfect CSI, and reconfigurable-intelligent-surface (RIS) aided beamforming, are shown to demonstrate how the proposed optimization framework can be realized in deriving the SDR counterparts for different beamforming designs.
The broad objective of this paper is to propose a mathematical model for the study of causes of wage inequality and relate it to choices of consumption, the technologies of production, and the composition of labor in an economy. The paper constructs a Simple Closed Model, or an SCM, for short, for closed economies, in which the consumption and the production parts are clearly separated and yet coupled. The model is established as a specialization of the Arrow-Debreu model and its equilibria correspond directly with those of the general Arrow-Debreu model. The formulation allows us to identify the combinatorial data which link parameters of the economic system with its equilibria, in particular, the impact of consumer preferences on wages. The SCM model also allows the formulation and explicit construction of the consumer choice game, where expressed utilities of various labor classes serve as strategies with total or relative wages as the pay-offs. We illustrate, through examples, the mathematical details of the consumer choice game. We show that consumer preferences, expressed through modified utility functions, do indeed percolate through the economy, and influence not only prices but also production and wages. Thus, consumer choice may serve as an effective tool for wage redistribution.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.