We develop a theoretical framework for the analysis of oblique decision trees, where the splits at each decision node occur at linear combinations of the covariates (as opposed to conventional tree constructions that force axis-aligned splits involving only a single covariate). While this methodology has garnered significant attention from the computer science and optimization communities since the mid-80s, the advantages they offer over their axis-aligned counterparts remain only empirically justified, and explanations for their success are largely based on heuristics. Filling this long-standing gap between theory and practice, we show that oblique regression trees (constructed by recursively minimizing squared error) satisfy a type of oracle inequality and can adapt to a rich library of regression models consisting of linear combinations of ridge functions and their limit points. This provides a quantitative baseline to compare and contrast decision trees with other less interpretable methods, such as projection pursuit regression and neural networks, which target similar model forms. Contrary to popular belief, one need not always trade-off interpretability with accuracy. Specifically, we show that, under suitable conditions, oblique decision trees achieve similar predictive accuracy as neural networks for the same library of regression models. To address the combinatorial complexity of finding the optimal splitting hyperplane at each decision node, our proposed theoretical framework can accommodate many existing computational tools in the literature. Our results rely on (arguably surprising) connections between recursive adaptive partitioning and sequential greedy approximation algorithms for convex optimization problems (e.g., orthogonal greedy algorithms), which may be of independent theoretical interest.
Conformal prediction has received tremendous attention in recent years and has offered new solutions to problems in missing data and causal inference; yet these advances have not leveraged modern semiparametric efficiency theory for more robust and efficient uncertainty quantification. In this paper, we consider the problem of obtaining distribution-free prediction regions accounting for a shift in the distribution of the covariates between the training and test data. Under an explainable covariate shift assumption analogous to the standard missing at random assumption, we propose three variants of a general framework to construct well-calibrated prediction regions for the unobserved outcome in the test sample. Our approach is based on the efficient influence function for the quantile of the unobserved outcome in the test population combined with an arbitrary machine learning prediction algorithm, without compromising asymptotic coverage. Next, we extend our approach to account for departure from the explainable covariate shift assumption in a semiparametric sensitivity analysis for potential latent covariate shift. In all cases, we establish that the resulting prediction sets eventually attain nominal average coverage in large samples. This guarantee is a consequence of the product bias form of our proposal which implies correct coverage if either the propensity score or the conditional distribution of the response is estimated sufficiently well. Our results also provide a framework for construction of doubly robust prediction sets of individual treatment effects, under both unconfoundedness and allowing for some degree of unmeasured confounding. Finally, we discuss aggregation of prediction sets from different machine learning algorithms for optimal prediction and illustrate the performance of our methods in both synthetic and real data.
Quantile regression is increasingly encountered in modern big data applications due to its robustness and flexibility. We consider the scenario of learning the conditional quantiles of a specific target population when the available data may go beyond the target and be supplemented from other sources that possibly share similarities with the target. A crucial question is how to properly distinguish and utilize useful information from other sources to improve the quantile estimation and inference at the target. We develop transfer learning methods for high-dimensional quantile regression by detecting informative sources whose models are similar to the target and utilizing them to improve the target model. We show that under reasonable conditions, the detection of the informative sources based on sample splitting is consistent. Compared to the naive estimator with only the target data, the transfer learning estimator achieves a much lower error rate as a function of the sample sizes, the signal-to-noise ratios, and the similarity measures among the target and the source models. Extensive simulation studies demonstrate the superiority of our proposed approach. We apply our methods to tackle the problem of detecting hard-landing risk for flight safety and show the benefits and insights gained from transfer learning of three different types of airplanes: Boeing 737, Airbus A320, and Airbus A380.
Natural Language Generation (NLG) represents a large collection of tasks in the field of NLP. While many of these tasks have been tackled well by the cross-entropy (CE) loss, the task of dialog generation poses a few unique challenges for this loss function. First, CE loss assumes that for any given input, the only possible output is the one available as the ground truth in the training dataset. In general, this is not true for any task, as there can be multiple semantically equivalent sentences, each with a different surface form. This problem gets exaggerated further for the dialog generation task, as there can be multiple valid responses (for a given context) that not only have different surface forms but are also not semantically equivalent. Second, CE loss does not take the context into consideration while processing the response and, hence, it treats all ground truths with equal importance irrespective of the context. But, we may want our final agent to avoid certain classes of responses (e.g. bland, non-informative or biased responses) and give relatively higher weightage for more context-specific responses. To circumvent these shortcomings of the CE loss, in this paper, we propose a novel loss function, CORAL, that directly optimizes recently proposed estimates of human preference for generated responses. Using CORAL, we can train dialog generation models without assuming non-existence of response other than the ground-truth. Also, the CORAL loss is computed based on both the context and the response. Extensive comparisons on two benchmark datasets show that the proposed methods outperform strong state-of-the-art baseline models of different sizes.
In this paper, we revisit the class of iterative shrinkage-thresholding algorithms (ISTA) for solving the linear inverse problem with sparse representation, which arises in signal and image processing. It is shown in the numerical experiment to deblur an image that the convergence behavior in the logarithmic-scale ordinate tends to be linear instead of logarithmic, approximating to be flat. Making meticulous observations, we find that the previous assumption for the smooth part to be convex weakens the least-square model. Specifically, assuming the smooth part to be strongly convex is more reasonable for the least-square model, even though the image matrix is probably ill-conditioned. Furthermore, we improve the pivotal inequality tighter for composite optimization with the smooth part to be strongly convex instead of general convex, which is first found in [Li et al., 2022]. Based on this pivotal inequality, we generalize the linear convergence to composite optimization in both the objective value and the squared proximal subgradient norm. Meanwhile, we set a simple ill-conditioned matrix which is easy to compute the singular values instead of the original blur matrix. The new numerical experiment shows the proximal generalization of Nesterov's accelerated gradient descent (NAG) for the strongly convex function has a faster linear convergence rate than ISTA. Based on the tighter pivotal inequality, we also generalize the faster linear convergence rate to composite optimization, in both the objective value and the squared proximal subgradient norm, by taking advantage of the well-constructed Lyapunov function with a slight modification and the phase-space representation based on the high-resolution differential equation framework from the implicit-velocity scheme.
Practitioners are often left tuning Metropolis-Hastings algorithms by trial and error or using optimal scaling guidelines to avoid poor empirical performance. We develop lower bounds on the convergence rates of geometrically ergodic accept-reject-based Markov chains (i.e. Metropolis-Hastings, non-reversible Metropolis-Hastings) to study their computational complexity. If the target density concentrates with a parameter $n$ (e.g. Bayesian posterior concentration, Laplace approximations), we show the convergence rate can tend to $1$ exponentially fast if the tuning parameters do not depend carefully on $n$. We show this is the case for random-walk Metropolis in Bayesian logistic regression with Zellner's g-prior when the dimension and sample size $d/n \to \gamma \in (0, 1)$. We focus on more general target densities using a special class of Metropolis-Hastings algorithms with a Gaussian proposal (e.g. random walk and Metropolis-adjusted Langevin algorithms) where we give more general conditions. An application to flat prior Bayesian logistic regression as $n \to \infty$ is studied. We also develop lower bounds in the Wasserstein distances which have become popular in the convergence analysis of high-dimensional MCMC algorithms with similar conclusions.
Federated learning enables cooperative training among massively distributed clients by sharing their learned local model parameters. However, with increasing model size, deploying federated learning requires a large communication bandwidth, which limits its deployment in wireless networks. To address this bottleneck, we introduce a residual-based federated learning framework (ResFed), where residuals rather than model parameters are transmitted in communication networks for training. In particular, we integrate two pairs of shared predictors for the model prediction in both server-to-client and client-to-server communication. By employing a common prediction rule, both locally and globally updated models are always fully recoverable in clients and the server. We highlight that the residuals only indicate the quasi-update of a model in a single inter-round, and hence contain more dense information and have a lower entropy than the model, comparing to model weights and gradients. Based on this property, we further conduct lossy compression of the residuals by sparsification and quantization and encode them for efficient communication. The experimental evaluation shows that our ResFed needs remarkably less communication costs and achieves better accuracy by leveraging less sensitive residuals, compared to standard federated learning. For instance, to train a 4.08 MB CNN model on CIFAR-10 with 10 clients under non-independent and identically distributed (Non-IID) setting, our approach achieves a compression ratio over 700X in each communication round with minimum impact on the accuracy. To reach an accuracy of 70%, it saves around 99% of the total communication volume from 587.61 Mb to 6.79 Mb in up-streaming and to 4.61 Mb in down-streaming on average for all clients.
This paper provides estimation and inference methods for an identified set's boundary (i.e., support function) where the selection among a very large number of covariates is based on modern regularized tools. I characterize the boundary using a semiparametric moment equation. Combining Neyman-orthogonality and sample splitting ideas, I construct a root-N consistent, uniformly asymptotically Gaussian estimator of the boundary and propose a multiplier bootstrap procedure to conduct inference. I apply this result to the partially linear model, the partially linear IV model and the average partial derivative with an interval-valued outcome.
Nonlinear Markov Chains (nMC) are regarded as the original (linear) Markov Chains with nonlinear small perturbations. It fits real-world data better, but its associated properties are difficult to describe. A new approach is proposed to analyze the ergodicity and even estimate the convergence bounds of nMC, which is more precise than existing results. In the new method, Coupling Markov about homogeneous Markov chains is applied to reconstitute the relationship between distribution at any times and the limiting distribution. The convergence bounds can be provided by the transition probability matrix of Coupling Markov. Moreover, a new volatility called TV Volatility can be calculated through the convergence bounds, wavelet analysis and Gaussian HMM. It's tested to estimate the volatility of two securities (TSLA and AMC). The results show TV Volatility can reflect the magnitude of the change of square returns in a period wonderfully.
Most regularized tensor regression research focuses on tensors predictors with scalars responses or vectors predictors to tensors responses. We consider the sparse low rank tensor on tensor regression where predictors $\mathcal{X}$ and responses $\mathcal{Y}$ are both high-dimensional tensors. By demonstrating that the general inner product or the contracted product on a unit rank tensor can be decomposed into standard inner products and outer products, the problem can be simply transformed into a tensor to scalar regression followed by a tensor decomposition. So we propose a fast solution based on stagewise search composed by contraction part and generation part which are optimized alternatively. We successfully demonstrate our method can out perform current methods in terms of accuracy, predictors selection by effectively incorporating the structural information.
In online sales, sellers usually offer each potential buyer a posted price in a take-it-or-leave fashion. Buyers can sometimes see posted prices faced by other buyers, and changing the price frequently could be considered unfair. The literature on posted price mechanisms and prophet inequality problems has studied the two extremes of pricing policies, the fixed price policy and fully dynamic pricing. The former is suboptimal in revenue but is perceived as fairer than the latter. This work examines the middle situation, where there are at most $k$ distinct prices over the selling horizon. Using the framework of prophet inequalities with independent and identically distributed random variables, we propose a new prophet inequality for strategies that use at most $k$ thresholds. We present asymptotic results in $k$ and results for small values of $k$. For $k=2$ prices, we show an improvement of at least $11\%$ over the best fixed-price solution. Moreover, $k=5$ prices suffice to guarantee almost $99\%$ of the approximation factor obtained by a fully dynamic policy that uses an arbitrary number of prices. From a technical standpoint, we use an infinite-dimensional linear program in our analysis; this formulation could be of independent interest to other online selection problems.