亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Maximum mean discrepancy (MMD) refers to a general class of nonparametric two-sample tests that are based on maximizing the mean difference over samples from one distribution $P$ versus another $Q$, over all choices of data transformations $f$ living in some function space $\mathcal{F}$. Inspired by recent work that connects what are known as functions of $\textit{Radon bounded variation}$ (RBV) and neural networks (Parhi and Nowak, 2021, 2023), we study the MMD defined by taking $\mathcal{F}$ to be the unit ball in the RBV space of a given smoothness order $k \geq 0$. This test, which we refer to as the $\textit{Radon-Kolmogorov-Smirnov}$ (RKS) test, can be viewed as a generalization of the well-known and classical Kolmogorov-Smirnov (KS) test to multiple dimensions and higher orders of smoothness. It is also intimately connected to neural networks: we prove that the witness in the RKS test -- the function $f$ achieving the maximum mean difference -- is always a ridge spline of degree $k$, i.e., a single neuron in a neural network. This allows us to leverage the power of modern deep learning toolkits to (approximately) optimize the criterion that underlies the RKS test. We prove that the RKS test has asymptotically full power at distinguishing any distinct pair $P \not= Q$ of distributions, derive its asymptotic null distribution, and carry out extensive experiments to elucidate the strengths and weakenesses of the RKS test versus the more traditional kernel MMD test.

相關內容

Neural image classifiers are known to undergo severe performance degradation when exposed to inputs that exhibit covariate shifts with respect to the training distribution. A general interventional data augmentation (IDA)mechanism that simulates arbitrary interventions over spurious variables has often been conjectured as a theoretical solution to this problem and approximated to varying degrees of success. In this work, we study how well modern Text-to-Image (T2I) generators and associated image editing techniques can solve the problem of IDA. We experiment across a diverse collection of benchmarks in domain generalization, ablating across key dimensions of T2I generation, including interventional prompts, conditioning mechanisms, and post-hoc filtering, showing that it substantially outperforms previously state-of-the-art image augmentation techniques independently of how each dimension is configured. We discuss the comparative advantages of using T2I for image editing versus synthesis, also finding that a simple retrieval baseline presents a surprisingly effective alternative, which raises interesting questions about how generative models should be evaluated in the context of domain generalization.

Jina Embeddings constitutes a set of high-performance sentence embedding models adept at translating textual inputs into numerical representations, capturing the semantics of the text. These models excel in applications like dense retrieval and semantic textual similarity. This paper details the development of Jina Embeddings, starting with the creation of high-quality pairwise and triplet datasets. It underlines the crucial role of data cleaning in dataset preparation, offers in-depth insights into the model training process, and concludes with a comprehensive performance evaluation using the Massive Text Embedding Benchmark (MTEB). Furthermore, to increase the model's awareness of grammatical negation, we construct a novel training and evaluation dataset of negated and non-negated statements, which we make publicly available to the community.

Automatic speech recognition (ASR) and speech translation (ST) can both use neural transducers as the model structure. It is thus possible to use a single transducer model to perform both tasks. In real-world applications, such joint ASR and ST models may need to be streaming and do not require source language identification (i.e. language-agnostic). In this paper, we propose LAMASSU, a streaming language-agnostic multilingual speech recognition and translation model using neural transducers. Based on the transducer model structure, we propose four methods, a unified joint and prediction network for multilingual output, a clustered multilingual encoder, target language identification for encoder, and connectionist temporal classification regularization. Experimental results show that LAMASSU not only drastically reduces the model size but also reaches the performances of monolingual ASR and bilingual ST models.

The GM-MDS theorem, conjectured by Dau-Song-Dong-Yuen and proved by Lovett and Yildiz-Hassibi, shows that the generator matrices of Reed-Solomon codes can attain every possible configuration of zeros for an MDS code. The recently emerging theory of higher order MDS codes has connected the GM-MDS theorem to other important properties of Reed-Solomon codes, including showing that Reed-Solomon codes can achieve list decoding capacity, even over fields of size linear in the message length. A few works have extended the GM-MDS theorem to other families of codes, including Gabidulin and skew polynomial codes. In this paper, we generalize all these previous results by showing that the GM-MDS theorem applies to any \emph{polynomial code}, i.e., a code where the columns of the generator matrix are obtained by evaluating linearly independent polynomials at different points. We also show that the GM-MDS theorem applies to dual codes of such polynomial codes, which is non-trivial since the dual of a polynomial code may not be a polynomial code. More generally, we show that GM-MDS theorem also holds for algebraic codes (and their duals) where columns of the generator matrix are chosen to be points on some irreducible variety which is not contained in a hyperplane through the origin. Our generalization has applications to constructing capacity-achieving list-decodable codes as shown in a follow-up work by Brakensiek-Dhar-Gopi-Zhang, where it is proved that randomly punctured algebraic-geometric (AG) codes achieve list-decoding capacity over constant-sized fields.

The simplex gradient, a popular numerical differentiation method due to its flexibility, lacks a principled method by which to construct the sample set, specifically the location of function evaluations. Such evaluations, especially from real-world systems, are often noisy and expensive to obtain, making it essential that each evaluation is carefully chosen to reduce cost and increase accuracy. This paper introduces the curvature aligned simplex gradient (CASG), which provably selects the optimal sample set under a mean squared error objective. As CASG requires function-dependent information often not available in practice, we additionally introduce a framework which exploits a history of function evaluations often present in practical applications. Our numerical results, focusing on applications in sensitivity analysis and derivative free optimization, show that our methodology significantly outperforms or matches the performance of the benchmark gradient estimator given by forward differences (FD) which is given exact function-dependent information that is not available in practice. Furthermore, our methodology is comparable to the performance of central differences (CD) that requires twice the number of function evaluations.

Existing regression models tend to fall short in both accuracy and uncertainty estimation when the label distribution is imbalanced. In this paper, we propose a probabilistic deep learning model, dubbed variational imbalanced regression (VIR), which not only performs well in imbalanced regression but naturally produces reasonable uncertainty estimation as a byproduct. Different from typical variational autoencoders assuming I.I.D. representations (a data point's representation is not directly affected by other data points), our VIR borrows data with similar regression labels to compute the latent representation's variational distribution; furthermore, different from deterministic regression models producing point estimates, VIR predicts the entire normal-inverse-gamma distributions and modulates the associated conjugate distributions to impose probabilistic reweighting on the imbalanced data, thereby providing better uncertainty estimation. Experiments in several real-world datasets show that our VIR can outperform state-of-the-art imbalanced regression models in terms of both accuracy and uncertainty estimation. Code will soon be available at //github.com/Wang-ML-Lab/variational-imbalanced-regression.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations. However, in real scenarios, factors with semantics are not necessarily independent. Instead, there might be an underlying causal structure which renders these factors dependent. We thus propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent exogenous factors into causal endogenous ones that correspond to causally related concepts in data. We further analyze the model identifiabitily, showing that the proposed model learned from observations recovers the true one up to a certain degree. Experiments are conducted on various datasets, including synthetic and real word benchmark CelebA. Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy. Furthermore, we demonstrate that the proposed CausalVAE model is able to generate counterfactual data through "do-operation" to the causal factors.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

北京阿比特科技有限公司