亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Retrieval Augmented Generation (RAG) is a common method for integrating external knowledge into pretrained Large Language Models (LLMs) to enhance accuracy and relevancy in question answering (QA) tasks. However, prompt engineering and resource efficiency remain significant bottlenecks in developing optimal and robust RAG solutions for real-world QA applications. Recent studies have shown success in using fine tuning to address these problems; in particular, Retrieval Augmented Fine Tuning (RAFT) applied to smaller 7B models has demonstrated superior performance compared to RAG setups with much larger models such as GPT-3.5. The combination of RAFT with parameter-efficient fine tuning (PEFT) techniques, such as Low-Rank Adaptation (LoRA), promises an even more efficient solution, yet remains an unexplored area. In this work, we combine RAFT with LoRA to reduce fine tuning and storage requirements and gain faster inference times while maintaining comparable RAG performance. This results in a more compute-efficient RAFT, or CRAFT, which is particularly useful for knowledge-intensive QA tasks in resource-constrained environments where internet access may be restricted and hardware resources limited.

相關內容

自動問(wen)答(da)(da)(Question Answering, QA)是指利用(yong)(yong)計算機(ji)自動回答(da)(da)用(yong)(yong)戶(hu)所提出的(de)(de)(de)問(wen)題(ti)以滿足用(yong)(yong)戶(hu)知(zhi)識需求的(de)(de)(de)任務。不(bu)同(tong)于現(xian)有搜索引擎,問(wen)答(da)(da)系統(tong)是信息服務的(de)(de)(de)一種高級形式(shi),系統(tong)返回用(yong)(yong)戶(hu)的(de)(de)(de)不(bu)再是基于關鍵詞匹配排(pai)序的(de)(de)(de)文檔列(lie)表(biao),而是精準(zhun)的(de)(de)(de)自然(ran)語言答(da)(da)案。近年來,隨著人工智(zhi)能的(de)(de)(de)飛速發(fa)展,自動問(wen)答(da)(da)已(yi)經成為倍受關注且發(fa)展前景廣泛(fan)的(de)(de)(de)研究方向(xiang)。

知識薈萃

精品入(ru)門和(he)(he)進階教程、論(lun)文和(he)(he)代碼整理等

更多

查看相關VIP內容、論(lun)文、資訊等

A new class of Multi-Rotor Aerial Vehicles (MRAVs), known as omnidirectional MRAVs (o-MRAVs), has attracted significant interest in the robotics community. These MRAVs have the unique capability of independently controlling their 3D position and 3D orientation. In the context of aerial communication networks, this translates into the ability to control the position and orientation of the antenna mounted on the MRAV without any additional devices tasked for antenna orientation. This additional Degrees of Freedom (DoF) adds a new dimension to aerial communication systems, creating various research opportunities in communications-aware trajectory planning and positioning. This paper presents this new class of MRAVs and discusses use cases in areas such as physical layer security and optical communications. Furthermore, the benefits of these MRAVs are illustrated with realistic simulation scenarios. Finally, new research problems and opportunities introduced by this advanced robotics technology are discussed.

Federated Learning (FL) is essential for efficient data exchange in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally and shares only model updates. However, FL is vulnerable to privacy threats like model inversion and membership inference attacks, which can expose sensitive training data. To address these privacy concerns, Differential Privacy (DP) mechanisms are often applied. Yet, adding DP noise to black-box ML models degrades performance, especially in dynamic IoT systems where continuous, lifelong FL learning accumulates excessive noise over time. To mitigate this issue, we introduce Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that combines the neuro-symbolic paradigm with DP. FedHDPrivacy carefully manages the balance between privacy and performance by theoretically tracking cumulative noise from previous rounds and adding only the necessary incremental noise to meet privacy requirements. In a real-world case study involving in-process monitoring of manufacturing machining operations, FedHDPrivacy demonstrates robust performance, outperforming standard FL frameworks-including Federated Averaging (FedAvg), Federated Stochastic Gradient Descent (FedSGD), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Adam (FedAdam)-by up to 38%. FedHDPrivacy also shows potential for future enhancements, such as multimodal data fusion.

Large Language Models (LLMs) have demonstrated remarkable success across a wide range of language tasks, but their deployment on edge devices remains challenging due to the substantial memory requirements imposed by their large parameter sizes. Weight-only quantization presents a promising solution to reduce the memory footprint of LLMs. However, existing approaches primarily focus on integer-bit quantization, limiting their adaptability to fractional-bit quantization tasks and preventing the full utilization of available storage space on devices. In this paper, we introduce Channel-Wise Mixed-Precision Quantization (CMPQ), a novel mixed-precision quantization method that allocates quantization precision in a channel-wise pattern based on activation distributions. By assigning different precision levels to different weight channels, CMPQ can adapt to any bit-width constraint. CMPQ employs a non-uniform quantization strategy and incorporates two outlier extraction techniques that collaboratively preserve the critical information, thereby minimizing the quantization loss. Experiments on different sizes of LLMs demonstrate that CMPQ not only enhances performance in integer-bit quantization tasks but also achieves significant performance gains with a modest increase in memory usage. CMPQ thus represents an adaptive and effective approach to LLM quantization, offering substantial benefits across diverse device capabilities.

Large Language Models (LLMs) often encounter conflicts between their learned, internal (parametric knowledge, PK) and external knowledge provided during inference (contextual knowledge, CK). Understanding how LLMs models prioritize one knowledge source over the other remains a challenge. In this paper, we propose a novel probing framework to explore the mechanisms governing the selection between PK and CK in LLMs. Using controlled prompts designed to contradict the model's PK, we demonstrate that specific model activations are indicative of the knowledge source employed. We evaluate this framework on various LLMs of different sizes and demonstrate that mid-layer activations, particularly those related to relations in the input, are crucial in predicting knowledge source selection, paving the way for more reliable models capable of handling knowledge conflicts effectively.

The Conditional Gaussian Nonlinear System (CGNS) is a broad class of nonlinear stochastic dynamical systems. Given the trajectories for a subset of state variables, the remaining follow a Gaussian distribution. Despite the conditionally linear structure, the CGNS exhibits strong nonlinearity, thus capturing many non-Gaussian characteristics observed in nature through its joint and marginal distributions. Desirably, it enjoys closed analytic formulae for the time evolution of its conditional Gaussian statistics, which facilitate the study of data assimilation and other related topics. In this paper, we develop a martingale-free approach to improve the understanding of CGNSs. This methodology provides a tractable approach to proving the time evolution of the conditional statistics by deriving results through time discretization schemes, with the continuous-time regime obtained via a formal limiting process as the discretization time-step vanishes. This discretized approach further allows for developing analytic formulae for optimal posterior sampling of unobserved state variables with correlated noise. These tools are particularly valuable for studying extreme events and intermittency and apply to high-dimensional systems. Moreover, the approach improves the understanding of different sampling methods in characterizing uncertainty. The effectiveness of the framework is demonstrated through a physics-constrained, triad-interaction climate model with cubic nonlinearity and state-dependent cross-interacting noise.

We develop a generic policy gradient method with the global optimality guarantee for robust Markov Decision Processes (MDPs). While policy gradient methods are widely used for solving dynamic decision problems due to their scalable and efficient nature, adapting these methods to account for model ambiguity has been challenging, often making it impractical to learn robust policies. This paper introduces a novel policy gradient method, Double-Loop Robust Policy Mirror Descent (DRPMD), for solving robust MDPs. DRPMD employs a general mirror descent update rule for the policy optimization with adaptive tolerance per iteration, guaranteeing convergence to a globally optimal policy. We provide a comprehensive analysis of DRPMD, including new convergence results under both direct and softmax parameterizations, and provide novel insights into the inner problem solution through Transition Mirror Ascent (TMA). Additionally, we propose innovative parametric transition kernels for both discrete and continuous state-action spaces, broadening the applicability of our approach. Empirical results validate the robustness and global convergence of DRPMD across various challenging robust MDP settings.

Multimodal Large Language Models (MLLMs) inherit the superior text understanding capabilities of LLMs and extend these capabilities to multimodal scenarios. These models achieve excellent results in the general domain of multimodal tasks. However, in the medical domain, the substantial training costs and the requirement for extensive medical data pose challenges to the development of medical MLLMs. Furthermore, due to the free-text form of answers, tasks such as visual grounding that need to produce output in a prescribed form become difficult for MLLMs. So far, there have been no medical MLLMs works in medical visual grounding area. For the medical vision grounding task, which involves identifying locations in medical images based on short text descriptions, we propose Parameter-efficient Fine-tuning medical multimodal large language models for Medcial Visual Grounding (PFMVG). To validate the performance of the model, we evaluate it on a public benchmark dataset for medical visual grounding, where it achieves competitive results, and significantly outperforming GPT-4v. Our code will be open sourced after peer review.

The integration of the Metaverse into a human-centric ecosystem has intensified the need for sophisticated Human Digital Twins (HDTs) that are driven by the multifaceted human data. However, the effective construction of HDTs faces significant challenges due to the heterogeneity of data collection devices, the high energy demands associated with processing intricate data, and concerns over the privacy of sensitive information. This work introduces a novel biologically-inspired (bio-inspired) HDT framework that leverages Brain-Computer Interface (BCI) sensor technology to capture brain signals as the data source for constructing HDT. By collecting and analyzing these signals, the framework not only minimizes device heterogeneity and enhances data collection efficiency, but also provides richer and more nuanced physiological and psychological data for constructing personalized HDTs. To this end, we further propose a bio-inspired neuromorphic computing learning model based on the Spiking Neural Network (SNN). This model utilizes discrete neural spikes to emulate the way of human brain processes information, thereby enhancing the system's ability to process data effectively while reducing energy consumption. Additionally, we integrate a Federated Learning (FL) strategy within the model to strengthen data privacy. We then conduct a case study to demonstrate the performance of our proposed twofold bio-inspired scheme. Finally, we present several challenges and promising directions for future research of HDTs driven by bio-inspired technologies.

Multimodal Large Language Model (MLLM) recently has been a new rising research hotspot, which uses powerful Large Language Models (LLMs) as a brain to perform multimodal tasks. The surprising emergent capabilities of MLLM, such as writing stories based on images and OCR-free math reasoning, are rare in traditional methods, suggesting a potential path to artificial general intelligence. In this paper, we aim to trace and summarize the recent progress of MLLM. First of all, we present the formulation of MLLM and delineate its related concepts. Then, we discuss the key techniques and applications, including Multimodal Instruction Tuning (M-IT), Multimodal In-Context Learning (M-ICL), Multimodal Chain of Thought (M-CoT), and LLM-Aided Visual Reasoning (LAVR). Finally, we discuss existing challenges and point out promising research directions. In light of the fact that the era of MLLM has only just begun, we will keep updating this survey and hope it can inspire more research. An associated GitHub link collecting the latest papers is available at //github.com/BradyFU/Awesome-Multimodal-Large-Language-Models.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司