亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We derive a formula for the adjoint $\overline{A}$ of a square-matrix operation of the form $C=f(A)$, where $f$ is holomorphic in the neighborhood of each eigenvalue. We then apply the formula to derive closed-form expressions in particular cases of interest such as the case when we have a spectral decomposition $A=UDU^{-1}$, the spectrum cut-off $C=A_+$ and the Nearest Correlation Matrix routine. Finally, we explain how to simplify the computation of adjoints for regularized linear regression coefficients.

相關內容

This work proposes a fast iterative method for local steric Poisson--Boltzmann (PB) theories, in which the electrostatic potential is governed by the Poisson's equation and ionic concentrations satisfy equilibrium conditions. To present the method, we focus on a local steric PB theory derived from a lattice-gas model, as an example. The advantages of the proposed method in efficiency lies on a key idea that ionic concentrations as scalar implicit functions of the electrostatic potential, i.e, generalized Boltzmann distributions, are numerically available. The existence, uniqueness, boundness, and smoothness of such distributions are rigorously established. A Newton iteration method with truncation is proposed to solve a nonlinear system discretized from the generalized PB equations. The existence and uniqueness of the solution to the discretized nonlinear system are established by showing that it is a unique minimizer of a constructed convex energy. Thanks to the boundness of ionic concentrations, truncation bounds for the potential are obtained by using the extremum principle. The truncation step in iterations is shown to be energy, residual, and error decreasing. To further speed-up computations, we propose a novel precomputing-interpolation strategy, which is applicable to other local steric PB theories and makes the proposed methods for solving steric PB theories as efficient as for solving the classical PB theory. Analysis on the Newton iteration method with truncation shows local quadratic convergence for the proposed numerical methods. Applications to realistic biomolecular solvation systems reveal that counterions with steric hindrance stratify in an order prescribed by the parameter of ionic valence-to-volume ratio. Finally, we remark that the proposed iterative methods for local steric PB theories can be readily incorporated in well-known classical PB solvers.

On the case that the number of dangling nodes is large, PageRank computation can be proceeded with a much smaller matrix through lumping all dangling nodes of a web graph into a single node. Thus, it saves many computational cost and operations. There are also some theoretical contributions on Jordan canonical form of the Google matrix. Motivated by these theoretical contributions, in this note, we provide alternative proofs for some results of Google matrix through the lumping method due to Ipsen and Selee. Specifically we find that the result is also suitable for some subsequent work based on lumping dangling nodes into a node. Besides, an entirely new proof from the matrix decomposition viewpoint is also proposed.

We construct a space-time parallel method for solving parabolic partial differential equations by coupling the Parareal algorithm in time with overlapping domain decomposition in space. Reformulating the original Parareal algorithm as a variational method and implementing a finite element discretization in space enables an adjoint-based a posteriori error analysis to be performed. Through an appropriate choice of adjoint problems and residuals the error analysis distinguishes between errors arising due to the temporal and spatial discretizations, as well as between the errors arising due to incomplete Parareal iterations and incomplete iterations of the domain decomposition solver. We first develop an error analysis for the Parareal method applied to parabolic partial differential equations, and then refine this analysis to the case where the associated spatial problems are solved using overlapping domain decomposition. These constitute our Time Parallel Algorithm (TPA) and Space-Time Parallel Algorithm (STPA) respectively. Numerical experiments demonstrate the accuracy of the estimator for both algorithms and the iterations between distinct components of the error.

Recently Chen and Gao~\cite{ChenGao2017} proposed a new quantum algorithm for Boolean polynomial system solving, motivated by the cryptanalysis of some post-quantum cryptosystems. The key idea of their approach is to apply a Quantum Linear System (QLS) algorithm to a Macaulay linear system over $\CC$, which is derived from the Boolean polynomial system. The efficiency of their algorithm depends on the condition number of the Macaulay matrix. In this paper, we give a strong lower bound on the condition number as a function of the Hamming weight of the Boolean solution, and show that in many (if not all) cases a Grover-based exhaustive search algorithm outperforms their algorithm. Then, we improve upon Chen and Gao's algorithm by introducing the Boolean Macaulay linear system over $\CC$ by reducing the original Macaulay linear system. This improved algorithm could potentially significantly outperform the brute-force algorithm, when the Hamming weight of the solution is logarithmic in the number of Boolean variables. Furthermore, we provide a simple and more elementary proof of correctness for our improved algorithm using a reduction employing the Valiant-Vazirani affine hashing method, and also extend the result to polynomial systems over $\FF_q$ improving on subsequent work by Chen, Gao and Yuan \cite{ChenGao2018}. We also suggest a new approach for extracting the solution of the Boolean polynomial system via a generalization of the quantum coupon collector problem \cite{arunachalam2020QuantumCouponCollector}.

Matrix completion refers to completing a low-rank matrix from a few observed elements of its entries and has been known as one of the significant and widely-used problems in recent years. The required number of observations for exact completion is directly proportional to rank and the coherency parameter of the matrix. In many applications, there might exist additional information about the low-rank matrix of interest. For example, in collaborative filtering, Netflix and dynamic channel estimation in communications, extra subspace information is available. More precisely in these applications, there are prior subspaces forming multiple angles with the ground-truth subspaces. In this paper, we propose a novel strategy to incorporate this information into the completion task. To this end, we designed a multi-weight nuclear norm minimization where the weights are such chosen to penalize each angle within the matrix subspace independently. We propose a new scheme for optimally choosing the weights. Specifically, we first calculate an upper-bound expression describing the coherency of the interested matrix. Then, we obtain the optimal weights by minimizing this expression. Simulation results certify the advantages of allowing multiple weights in the completion procedure. Explicitly, they indicate that our proposed multi-weight problem needs fewer observations compared to state-of-the-art methods.

In the literature on simultaneous non-cooperative games, it is well-known that a positive affine (linear) transformation (PAT) of the utility payoffs do not change the best response sets and the Nash equilibrium set. PATs have been successfully used to expand the classes of 2-player games for which we can compute a Nash equilibrium in polynomial time. We investigate which game transformations other than PATs also possess one of the following properties: (i) The game transformation shall not change the Nash equilibrium set when being applied on an arbitrary game. (ii) The game transformation shall not change the best response sets when being applied on an arbitrary game. First, we prove that property (i) implies property (ii). Over a series of further results, we derive that game transformations with property (ii) must be positive affine. Therefore, we obtained two new and equivalent characterisations with game theoretic meaning for what it means to be a positive affine transformation. All our results in particular hold for the 2-player case of bimatrix games.

This paper is concerned with the inverse problem of constructing a symmetric nonnegative matrix from realizable spectrum. We reformulate the inverse problem as an underdetermined nonlinear matrix equation over a Riemannian product manifold. To solve it, we develop a Riemannian underdetermined inexact Newton dogleg method for solving a general underdetermined nonlinear equation defined between Riemannian manifolds and Euclidean spaces. The global and quadratic convergence of the proposed method is established under some mild assumptions. Then we solve the inverse problem by applying the proposed method to its equivalent nonlinear matrix equation and a preconditioner for the perturbed normal Riemannian Newton equation is also constructed. Numerical tests show the efficiency of the proposed method for solving the inverse problem.

We consider \emph{Gibbs distributions}, which are families of probability distributions over a discrete space $\Omega$ with probability mass function of the form $\mu^\Omega_\beta(\omega) \propto e^{\beta H(\omega)}$ for $\beta$ in an interval $[\beta_{\min}, \beta_{\max}]$ and $H( \omega ) \in \{0 \} \cup [1, n]$. The \emph{partition function} is the normalization factor $Z(\beta)=\sum_{\omega \in\Omega}e^{\beta H(\omega)}$. Two important parameters of these distributions are the log partition ratio $q = \log \tfrac{Z(\beta_{\max})}{Z(\beta_{\min})}$ and the counts $c_x = |H^{-1}(x)|$. These are correlated with system parameters in a number of physical applications and sampling algorithms. Our first main result is to estimate the counts $c_x$ using roughly $\tilde O( \frac{q}{\varepsilon^2})$ samples for general Gibbs distributions and $\tilde O( \frac{n^2}{\varepsilon^2} )$ samples for integer-valued distributions (ignoring some second-order terms and parameters), and we show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs and perfect matchings in a graph. We develop a key subroutine to estimate the partition function $Z$. Specifically, it generates a data structure to estimate $Z(\beta)$ for \emph{all} values $\beta$, without further samples. Constructing the data structure requires $O(\frac{q \log n}{\varepsilon^2})$ samples for general Gibbs distributions and $O(\frac{n^2 \log n}{\varepsilon^2} + n \log q)$ samples for integer-valued distributions. This improves over a prior algorithm of Huber (2015) which computes a single point estimate $Z(\beta_\max)$ using $O( q \log n( \log q + \log \log n + \varepsilon^{-2}))$ samples. We show matching lower bounds, demonstrating that this complexity is optimal as a function of $n$ and $q$ up to logarithmic terms.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.

北京阿比特科技有限公司