亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent work of Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta [EFMRTT19] demonstrates that random shuffling amplifies differential privacy guarantees of locally randomized data. Such amplification implies substantially stronger privacy guarantees for systems in which data is contributed anonymously [BEMMRLRKTS17] and has lead to significant interest in the shuffle model of privacy [CSUZZ19; EFMRTT19]. We show that random shuffling of $n$ data records that are input to $\varepsilon_0$-differentially private local randomizers results in an $(O((1-e^{-\varepsilon_0})\sqrt{\frac{e^{\varepsilon_0}\log(1/\delta)}{n}}), \delta)$-differentially private algorithm. This significantly improves over previous work and achieves the asymptotically optimal dependence in $\varepsilon_0$. Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees. Importantly, our work also yields an algorithm for deriving tighter bounds on the resulting $\varepsilon$ and $\delta$ as well as R\'enyi differential privacy guarantees. We show numerically that our algorithm gets to within a small constant factor of the optimal bound. As a direct corollary of our analysis we derive a simple and nearly optimal algorithm for frequency estimation in the shuffle model of privacy. We also observe that our result implies the first asymptotically optimal privacy analysis of noisy stochastic gradient descent that applies to sampling without replacement.

相關內容

We introduce the multi-dimensional Skellam mechanism, a discrete differential privacy mechanism based on the difference of two independent Poisson random variables. To quantify its privacy guarantees, we analyze the privacy loss distribution via a numerical evaluation and provide a sharp bound on the R\'enyi divergence between two shifted Skellam distributions. While useful in both centralized and distributed privacy applications, we investigate how it can be applied in the context of federated learning with secure aggregation under communication constraints. Our theoretical findings and extensive experimental evaluations demonstrate that the Skellam mechanism provides the same privacy-accuracy trade-offs as the continuous Gaussian mechanism, even when the precision is low. More importantly, Skellam is closed under summation and sampling from it only requires sampling from a Poisson distribution -- an efficient routine that ships with all machine learning and data analysis software packages. These features, along with its discrete nature and competitive privacy-accuracy trade-offs, make it an attractive practical alternative to the newly introduced discrete Gaussian mechanism.

The ratio of two Gaussians is useful in many contexts of statistical inference. We discuss statistically valid inference of the ratio estimator under Differential Privacy (DP). We use the delta method to derive the asymptotic distribution of the ratio estimator and use the Gaussian mechanism to provide $(\epsilon, \delta)$ privacy guarantees. Like many statistics, the quantities needed here can be re-written as functions of sums, and sums are easy to work with for many reasons. In the DP case, the sensitivity of a sum can be easily obtained. We focus on the coverage of 95\% confidence intervals (CIs). Our simulations shows that the no correction method, which ignores the noise mechanism, gives CIs that are too narrow to provide proper coverage for small samples. We propose two methods to mitigate the under-coverage issue, one based on Monte Carlo simulations and the other based on analytical correction. We show that the CIs of our methods have the right coverage with proper privacy budget. In addition, our methods can handle weighted data, where the weights are fixed and bounded.

Federated learning (FL) is an emerging privacy-preserving paradigm, where a global model is trained at a central server while keeping client data local. However, FL can still indirectly leak private client information through model updates during training. Differential privacy (DP) can be employed to provide privacy guarantees within FL, typically at the cost of degraded final trained model. In this work, we consider a heterogeneous DP setup where clients are considered private by default, but some might choose to opt out of DP. We propose a new algorithm for federated learning with opt-out DP, referred to as \emph{FeO2}, along with a discussion on its advantages compared to the baselines of private and personalized FL algorithms. We prove that the server-side and client-side procedures in \emph{FeO2} are optimal for a simplified linear problem. We also analyze the incentive for opting out of DP in terms of performance gain. Through numerical experiments, we show that \emph{FeO2} provides up to $9.27\%$ performance gain in the global model compared to the baseline DP FL for the considered datasets. Additionally, we show a gap in the average performance of personalized models between non-private and private clients of up to $3.49\%$, empirically illustrating an incentive for clients to opt out.

We develop a new primitive for stochastic optimization: a low-bias, low-cost estimator of the minimizer $x_\star$ of any Lipschitz strongly-convex function. In particular, we use a multilevel Monte-Carlo approach due to Blanchet and Glynn to turn any optimal stochastic gradient method into an estimator of $x_\star$ with bias $\delta$, variance $O(\log(1/\delta))$, and an expected sampling cost of $O(\log(1/\delta))$ stochastic gradient evaluations. As an immediate consequence, we obtain cheap and nearly unbiased gradient estimators for the Moreau-Yoshida envelope of any Lipschitz convex function, allowing us to perform dimension-free randomized smoothing. We demonstrate the potential of our estimator through four applications. First, we develop a method for minimizing the maximum of $N$ functions, improving on recent results and matching a lower bound up to logarithmic factors. Second and third, we recover state-of-the-art rates for projection-efficient and gradient-efficient optimization using simple algorithms with a transparent analysis. Finally, we show that an improved version of our estimator would yield a nearly linear-time, optimal-utility, differentially-private non-smooth stochastic optimization method.

We present a method for producing unbiased parameter estimates and valid confidence intervals under the constraints of differential privacy, a formal framework for limiting individual information leakage from sensitive data. Prior work in this area is limited in that it is tailored to calculating confidence intervals for specific statistical procedures, such as mean estimation or simple linear regression. While other recent work can produce confidence intervals for more general sets of procedures, they either yield only approximately unbiased estimates, are designed for one-dimensional outputs, or assume significant user knowledge about the data-generating distribution. Our method induces distributions of mean and covariance estimates via the bag of little bootstraps (BLB) and uses them to privately estimate the parameters' sampling distribution via a generalized version of the CoinPress estimation algorithm. If the user can bound the parameters of the BLB-induced parameters and provide heavier-tailed families, the algorithm produces unbiased parameter estimates and valid confidence intervals which hold with arbitrarily high probability. These results hold in high dimensions and for any estimation procedure which behaves nicely under the bootstrap.

Reinforcement learning algorithms are widely used in domains where it is desirable to provide a personalized service. In these domains it is common that user data contains sensitive information that needs to be protected from third parties. Motivated by this, we study privacy in the context of finite-horizon Markov Decision Processes (MDPs) by requiring information to be obfuscated on the user side. We formulate this notion of privacy for RL by leveraging the local differential privacy (LDP) framework. We establish a lower bound for regret minimization in finite-horizon MDPs with LDP guarantees which shows that guaranteeing privacy has a multiplicative effect on the regret. This result shows that while LDP is an appealing notion of privacy, it makes the learning problem significantly more complex. Finally, we present an optimistic algorithm that simultaneously satisfies $\varepsilon$-LDP requirements, and achieves $\sqrt{K}/\varepsilon$ regret in any finite-horizon MDP after $K$ episodes, matching the lower bound dependency on the number of episodes $K$.

Bayesian optimization (BO) has recently been extended to the federated learning (FL) setting by the federated Thompson sampling (FTS) algorithm, which has promising applications such as federated hyperparameter tuning. However, FTS is not equipped with a rigorous privacy guarantee which is an important consideration in FL. Recent works have incorporated differential privacy (DP) into the training of deep neural networks through a general framework for adding DP to iterative algorithms. Following this general DP framework, our work here integrates DP into FTS to preserve user-level privacy. We also leverage the ability of this general DP framework to handle different parameter vectors, as well as the technique of local modeling for BO, to further improve the utility of our algorithm through distributed exploration (DE). The resulting differentially private FTS with DE (DP-FTS-DE) algorithm is endowed with theoretical guarantees for both the privacy and utility and is amenable to interesting theoretical insights about the privacy-utility trade-off. We also use real-world experiments to show that DP-FTS-DE achieves high utility (competitive performance) with a strong privacy guarantee (small privacy loss) and induces a trade-off between privacy and utility.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Alternating Direction Method of Multipliers (ADMM) is a widely used tool for machine learning in distributed settings, where a machine learning model is trained over distributed data sources through an interactive process of local computation and message passing. Such an iterative process could cause privacy concerns of data owners. The goal of this paper is to provide differential privacy for ADMM-based distributed machine learning. Prior approaches on differentially private ADMM exhibit low utility under high privacy guarantee and often assume the objective functions of the learning problems to be smooth and strongly convex. To address these concerns, we propose a novel differentially private ADMM-based distributed learning algorithm called DP-ADMM, which combines an approximate augmented Lagrangian function with time-varying Gaussian noise addition in the iterative process to achieve higher utility for general objective functions under the same differential privacy guarantee. We also apply the moments accountant method to bound the end-to-end privacy loss. The theoretical analysis shows that DP-ADMM can be applied to a wider class of distributed learning problems, is provably convergent, and offers an explicit utility-privacy tradeoff. To our knowledge, this is the first paper to provide explicit convergence and utility properties for differentially private ADMM-based distributed learning algorithms. The evaluation results demonstrate that our approach can achieve good convergence and model accuracy under high end-to-end differential privacy guarantee.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

北京阿比特科技有限公司