亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The secrecy performance of realistic wireless multicast scenarios can be significantly deteriorated by the simultaneous occurrence of multipath and shadowing. To resolve this security threat, in this work an opportunistic relaying-based dual-hop wireless multicast framework is proposed in which the source dispatches confidential information to a bunch of receivers via intermediate relays under the wiretapping attempts of multiple eavesdroppers. Two scenarios, i.e. non-line of sight (NLOS) and line of sight (LOS) communications along with the multiplicative and LOS shadowing are considered where the first scenario assumes eta-mu and eta-mu/inverse Gamma (IG) composite fading channels and the latter one follows kappa-mu and kappa-mu/IG composite fading channels as the source to relay and relay to receiver's as well as eavesdropper's links, respectively. Secrecy analysis is accomplished by deriving closed-form expressions of three familiar secrecy measures i.e. secure outage probability for multicasting, probability of non-zero secrecy multicast capacity, and ergodic secrecy multicast capacity. We further capitalize on those expressions to observe the effects of all system parameters which are again corroborated via Monte-Carlo simulations. Our observations indicate that a secrecy tradeoff between the number of relays and number of receivers, eavesdroppers, and shadowing parameters can be established to maintain the admissible security level by decreasing the detrimental influences of fading, shadowing, the number of multicast receivers and eavesdroppers.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 博弈論 · Automator · Performer · SimPLe ·
2022 年 2 月 8 日

Predatory trading bots lurking in Ethereum's mempool present invisible taxation of traders on automated market makers (AMMs). AMM traders specify a slippage tolerance to indicate the maximum price movement they are willing to accept. This way, traders avoid automatic transaction failure in case of small price movements before their trade request executes. However, while a too-small slippage tolerance may lead to trade failures, a too-large tolerance allows predatory trading bots to profit from sandwich attacks. These bots can extract the difference between the slippage tolerance and the actual price movement as profit. In this work, we introduce the sandwich game to analyze sandwich attacks analytically from both the attacker and victim perspectives. Moreover, we provide a simple and highly effective algorithm that traders can use to set the slippage. We unveil that the vast majority of broadcast transactions can avoid sandwich attacks while simultaneously only experiencing a low risk of transaction failure. Thereby, we demonstrate that a constant auto-slippage cannot adjust to varying trade sizes and pool characteristics. Our algorithm outperforms the constant auto-slippage suggested by the biggest AMM, Uniswap, in all performed tests. Specifically, our algorithm repeatedly demonstrates a cost reduction exceeding a factor of 100.

We present a low-complexity and low-latency decoding algorithm for a class of Reed-Muller (RM) subcodes that are defined based on the product of smaller RM codes. More specifically, the input sequence is shaped as a multi-dimensional array, and the encoding over each dimension is done separately via a smaller RM encoder. Similarly, the decoding is performed over each dimension via a low-complexity decoder for smaller RM codes. The proposed construction is of particular interest to low-capacity channels that are relevant to emerging low-rate communication scenarios. We present an efficient soft-input soft-output (SISO) iterative decoding algorithm for the product of RM codes and demonstrate its superiority compared to hard decoding over RM code components. The proposed coding scheme has decoding (as well as encoding) complexity of $\mathcal{O}(n\log n)$ and latency of $\mathcal{O}(\log n)$ for blocklength $n$. This research renders a general framework toward efficient decoding of RM codes.

Unmanned aerial vehicles (UAVs) and Terahertz (THz) technology are envisioned to play paramount roles in next-generation wireless communications. In this paper, we present a novel secure UAV-assisted mobile relaying system operating at THz bands for data acquisition from multiple ground user equipments (UEs) towards a destination. We assume that the UAV-mounted relay may act, besides providing relaying services, as a potential eavesdropper called the untrusted UAV-relay (UUR). To safeguard end-to-end communications, we present a secure two-phase transmission strategy with cooperative jamming. Then, we devise an optimization framework in terms of a new measure $-$ secrecy energy efficiency (SEE), defined as the ratio of achievable average secrecy rate to average system power consumption, which enables us to obtain the best possible security level while taking UUR's inherent flight power limitation into account. For the sake of quality of service fairness amongst all the UEs, we aim to maximize the minimum SEE (MSEE) performance via the joint design of key system parameters, including UUR's trajectory and velocity, communication scheduling, and network power allocation. Since the formulated problem is a mixed-integer nonconvex optimization and computationally intractable, we decouple it into four subproblems and propose alternative algorithms to solve it efficiently via greedy/sequential block successive convex approximation and non-linear fractional programming techniques. Numerical results demonstrate significant MSEE performance improvement of our designs compared to other known benchmarks.

We establish the capacity of a class of communication channels introduced in [1]. The $n$-letter input from a finite alphabet is passed through a discrete memoryless channel $P_{Z|X}$ and then the output $n$-letter sequence is uniformly permuted. We show that the maximal communication rate (normalized by $\log n$) equals $1/2 (rank(P_{Z|X})-1)$ whenever $P_{Z|X}$ is strictly positive. This is done by establishing a converse bound matching the achievability of [1]. The two main ingredients of our proof are (1) a sharp bound on the entropy of a uniformly sampled vector from a type class and observed through a DMC; and (2) the covering $\epsilon$-net of a probability simplex with Kullback-Leibler divergence as a metric. In addition to strictly positive DMC we also find the noisy permutation capacity for $q$-ary erasure channels, the Z-channel and others.

Smart grids have received much attention in recent years in order to optimally manage the resources, transmission and consumption of electric power.In these grids, one of the most important communication services is the multicast service. Providing multicast services in the smart communicative grid poses several challenges, including the heterogeneity of different communication media and the strict requirements of reliability, security and latency. Wireless technologies and PLC connections are the two most important media used in this grid, among which PLC connections are very unstable, which makes it difficult to provide reliability. In this research, the problem of geographically flooding of multicast data has been considered. First, this problem has been modeled as an optimization problem which is used as a reference model in evaluating the proposed approaches. Then, two MKMB and GCBT multicast tree formation algorithms have been developed based on geographical information according to the characteristics of smart grids. Comparison of these two approaches shows the advantages and disadvantages of forming a core-based tree compared to a source-based tree. Evaluation of these approaches shows a relative improvement in tree cost and the amount of end-to-end delay compared to basic algorithms. In the second part, providing security and reliability in data transmission has been considered. Both Hybrid and Multiple algorithms have been developed based on the idea of multiple transmission tree. In the Hybrid algorithm, the aim is to provide higher security and reliability, but in the Multiple algorithms, minimization of message transmission delay is targeted. In the section of behavior evaluation, these two algorithms have been studied in different working conditions, which indicates the achievement of the desired goals.

We consider the problem of secure and reliable communication over a noisy multipath network. Previous work considering a noiseless version of our problem proposed a hybrid universal network coding cryptosystem (HUNCC). By combining an information-theoretically secure encoder together with partial encryption, HUNCC is able to obtain security guarantees, even in the presence of an all-observing eavesdropper. In this paper, we propose a version of HUNCC for noisy channels (N-HUNCC). This modification requires four main novelties. First, we present a network coding construction which is jointly, individually secure and error-correcting. Second, we introduce a new security definition which is a computational analogue of individual security, which we call individual indistinguishability under chosen ciphertext attack (individual IND-CCA1), and show that NHUNCC satisfies it. Third, we present a noise based decoder for N-HUNCC, which permits the decoding of the encoded-thenencrypted data. Finally, we discuss how to select parameters for N-HUNCC and its error-correcting capabilities.

The age of Information (AoI) has been introduced to capture the notion of freshness in real-time monitoring applications. However, this metric falls short in many scenarios, especially when quantifying the mismatch between the current and the estimated states. To circumvent this issue, in this paper, we adopt the age of incorrect of information metric (AoII) that considers the quantified mismatch between the source and the knowledge at the destination. We consider for that a problem where a central entity pulls the information from remote sources that evolve according to a Markovian Process. It selects at each time slot which sources should send their updates. As the scheduler does not know the real state of the remote sources, it estimates at each time the value of AoII based on the Markovian sources' parameters. Its goal is to keep the time average of AoII function as small as possible. We develop a scheduling scheme based on Whittle's index policy for that purpose. To that extent, we proceed by using the Lagrangian Relaxation Approach and establish that the dual problem has an optimal threshold policy. Building on that, we compute the expressions of Whittle's indices. Finally, we provide some numerical results to highlight the performance of our derived policy compared to the classical AoI metric.

Programmable radio environments parametrized by reconfigurable intelligent surfaces (RISs) are emerging as a new wireless communications paradigm, but currently used channel models for the design and analysis of signal-processing algorithms cannot include fading in a manner that is faithful to the underlying wave physics. To overcome this roadblock, we introduce a physics-based end-to-end model of RIS-parametrized wireless channels with adjustable fading (coined PhysFad) which is based on a first-principles coupled-dipole formalism. PhysFad naturally incorporates the notions of space and causality, dispersion (i.e., frequency selectivity) and the intertwinement of each RIS element's phase and amplitude response, as well as any arising mutual coupling effects including long-range mesoscopic correlations. PhysFad offers the to-date missing tuning knob for adjustable fading. We thoroughly characterize PhysFad and demonstrate its capabilities for a prototypical problem of RIS-enabled over-the-air channel equalization in rich-scattering wireless communications. We also share a user-friendly version of our code to help the community transition towards physics-based models with adjustable fading.

Reconfigurable Intelligent Surfaces (RISs) are an emerging technology for future wireless communication systems, enabling improved coverage in an energy efficient manner. RISs are usually metasurfaces, constituting of two-dimensional arrangements of metamaterial elements, whose individual response is commonly modeled in the literature as an adjustable phase shifter. However, this model holds only for narrow communications, and when wideband transmissions are utilized, one has to account for the frequency selectivity of metamaterials, whose response follows a Lorentzian profile. In this paper, we consider the uplink of a wideband RIS-empowered multi-user Multiple-Input Multiple-Output (MIMO) wireless system with Orthogonal Frequency Division Multiplexing (OFDM) signaling, while accounting for the frequency selectivity of RISs. In particular, we focus on designing the controllable parameters dictating the Lorentzian response of each RIS metamaterial element in order to maximize the achievable sum-rate. We devise a scheme combining block coordinate descent with penalty dual decomposition to tackle the resulting challenging optimization framework. Our simulation results reveal the achievable rates one can achieve using realistically frequency selective RISs in wideband settings, and quantify the performance loss that occurs when using state-of-the-art methods which assume that the RIS elements behave as frequency-flat phase shifters.

Batch Normalization (BN) improves both convergence and generalization in training neural networks. This work understands these phenomena theoretically. We analyze BN by using a basic block of neural networks, consisting of a kernel layer, a BN layer, and a nonlinear activation function. This basic network helps us understand the impacts of BN in three aspects. First, by viewing BN as an implicit regularizer, BN can be decomposed into population normalization (PN) and gamma decay as an explicit regularization. Second, learning dynamics of BN and the regularization show that training converged with large maximum and effective learning rate. Third, generalization of BN is explored by using statistical mechanics. Experiments demonstrate that BN in convolutional neural networks share the same traits of regularization as the above analyses.

北京阿比特科技有限公司