This study presents a comprehensive spatial eigenanalysis of fully-discrete discontinuous spectral element methods, now generalizing previous spatial eigenanalysis that did not include time integration errors. The influence of discrete time integration is discussed in detail for different explicit Runge-Kutta (1st to 4th order accurate) schemes combined with either Discontinuous Galerkin (DG) or Spectral Difference (SD) methods, both here recovered from the Flux Reconstruction (FR) scheme. Selected numerical experiments using the improved SD method by Liang and Jameson [1] are performed to quantify the influence of time integration errors on actual simulations. These involve test cases of varied complexity, from one-dimensional linear advection equation studies to well-resolved and under-resolved inviscid vortical flows. It is shown that, while both well-resolved and under-resolved simulations of linear problems correlate well with the eigenanalysis prediction of time integration errors, the correlation can be much worse for under-resolved nonlinear problems. The effect of mesh regularity is also considered, where time integration errors are found to be, in the case of irregular grids, less pronounced than those of the spatial discretisation. In fact, for the under-resolved vortical flows considered, the predominance of spatial errors made it practically impossible for time integration errors to be distinctly identified. Nevertheless, for well-resolved nonlinear simulations, the effect of time integration errors could still be recognized. This highlights that the interaction between space and time discretisation errors is more complex than otherwise anticipated, contributing to the current understanding about when eigenanalysis can effectively predict the behaviour of numerical errors in practical under-resolved nonlinear problems, including under-resolved turbulence computations.
This paper provides a unified perspective for the Kullback-Leibler (KL)-divergence and the integral probability metrics (IPMs) from the perspective of maximum likelihood density-ratio estimation (DRE). Both the KL-divergence and the IPMs are widely used in various fields in applications such as generative modeling. However, a unified understanding of these concepts has still been unexplored. In this paper, we show that the KL-divergence and the IPMs can be represented as maximal likelihoods differing only by sampling schemes, and use this result to derive a unified form of the IPMs and a relaxed estimation method. To develop the estimation problem, we construct an unconstrained maximum likelihood estimator to perform DRE with a stratified sampling scheme. We further propose a novel class of probability divergences, called the Density Ratio Metrics (DRMs), that interpolates the KL-divergence and the IPMs. In addition to these findings, we also introduce some applications of the DRMs, such as DRE and generative adversarial networks. In experiments, we validate the effectiveness of our proposed methods.
We present a novel class of locally conservative, entropy stable and well-balanced discontinuous Galerkin (DG) methods for the nonlinear shallow water equation with a non-flat bottom topography. The major novelty of our work is the use of velocity field as an independent solution unknown in the DG scheme, which is closely related to the entropy variable approach to entropy stable schemes for system of conservation laws proposed by Tadmor [22] back in 1986, where recall that velocity is part of the entropy variable for the shallow water equations. Due to the use of velocity as an independent solution unknown, no specific numerical quadrature rules are needed to achieve entropy stability of our scheme on general unstructured meshes in two dimensions. The proposed DG semi-discretization is then carefully combined with the classical explicit strong stability preserving Runge-Kutta (SSP-RK) time integrators [13] to yield a locally conservative, well-balanced, and positivity preserving fully discrete scheme. Here the positivity preservation property is enforced with the help of a simple scaling limiter. In the fully discrete scheme, we re-introduce discharge as an auxiliary unknown variable. In doing so, standard slope limiting procedures can be applied on the conservative variables (water height and discharge) without violating the local conservation property. Here we apply a characteristic-wise TVB limiter [5] on the conservative variables using the Fu-Shu troubled cell indicator [10] in each inner stage of the Runge-Kutta time stepping to suppress numerical oscillations.
Statistical analysis based on quantile regression methods is more comprehensive, flexible, and less sensitive to outliers when compared to mean regression methods. When the link between different diseases are of interest, joint disease mapping is useful for measuring directional correlation between them. Most studies study this link through multiple correlated mean regressions. In this paper we propose a joint quantile regression framework for multiple diseases where different quantile levels can be considered. We are motivated by the theorized link between the presence of Malaria and the gene deficiency G6PD, where medical scientist have anecdotally discovered a possible link between high levels of G6PD and lower than expected levels of Malaria initially pointing towards the occurrence of G6PD inhibiting the occurrence of Malaria. This link cannot be investigated with mean regressions and thus the need for flexible joint quantile regression in a disease mapping framework. Our joint quantile disease mapping model can be used for linear and non-linear effects of covariates by stochastic splines, since we define it as a latent Gaussian model. We perform Bayesian inference of this model using the INLA framework embedded in the R software package INLA. Finally, we illustrate the applicability of model by analyzing the malaria and G6PD deficiency incidences in 21 African countries using linked quantiles of different levels.
Casting nonlocal problems in variational form and discretizing them with the finite element (FE) method facilitates the use of nonlocal vector calculus to prove well-posedeness, convergence, and stability of such schemes. Employing an FE method also facilitates meshing of complicated domain geometries and coupling with FE methods for local problems. However, nonlocal weak problems involve the computation of a double-integral, which is computationally expensive and presents several challenges. In particular, the inner integral of the variational form associated with the stiffness matrix is defined over the intersections of FE mesh elements with a ball of radius $\delta$, where $\delta$ is the range of nonlocal interaction. Identifying and parameterizing these intersections is a nontrivial computational geometry problem. In this work, we propose a quadrature technique where the inner integration is performed using quadrature points distributed over the full ball, without regard for how it intersects elements, and weights are computed based on the generalized moving least squares method. Thus, as opposed to all previously employed methods, our technique does not require element-by-element integration and fully circumvents the computation of element-ball intersections. This paper considers one- and two-dimensional implementations of piecewise linear continuous FE approximations, focusing on the case where the element size h and the nonlocal radius $\delta$ are proportional, as is typical of practical computations. When boundary conditions are treated carefully and the outer integral of the variational form is computed accurately, the proposed method is asymptotically compatible in the limit of $h \sim \delta \to 0$, featuring at least first-order convergence in L^2 for all dimensions, using both uniform and nonuniform grids.
A kernel method for estimating a probability density function (pdf) from an i.i.d. sample drawn from such density is presented. Our estimator is a linear combination of kernel functions, the coefficients of which are determined by a linear equation. An error analysis for the mean integrated squared error is established in a general reproducing kernel Hilbert space setting. The theory developed is then applied to estimate pdfs belonging to weighted Korobov spaces, for which a dimension independent convergence rate is established. Under a suitable smoothness assumption, our method attains a rate arbitrarily close to the optimal rate. Numerical results support our theory.
Overdetermined systems of first kind integral equations appear in many applications. When the right-hand side is discretized, the resulting finite-data problem is ill-posed and admits infinitely many solutions. We propose a numerical method to compute the minimal-norm solution in the presence of boundary constraints. The algorithm stems from the Riesz representation theorem and operates in a reproducing kernel Hilbert space. Since the resulting linear system is strongly ill-conditioned, we construct a regularization method depending on a discrete parameter. It is based on the expansion of the minimal-norm solution in terms of the singular functions of the integral operator defining the problem. Two estimation techniques are tested for the automatic determination of the regularization parameter, namely, the discrepancy principle and the L-curve method. Numerical results concerning two artificial test problems demonstrate the excellent performance of the proposed method. Finally, a particular model typical of geophysical applications, which reproduces the readings of a frequency domain electromagnetic induction device, is investigated. The results show that the new method is extremely effective when the sought solution is smooth, but gives significant information on the solution even for non-smooth solutions.
We study the numerical approximation by space-time finite element methods of a multi-physics system coupling hyperbolic elastodynamics with parabolic transport and modelling poro- and thermoelasticity. The equations are rewritten as a first-order system in time. Discretizations by continuous Galerkin methods in space and time with inf-sup stable pairs of finite elements for the spatial approximation of the unknowns are investigated. Optimal order error estimates of energy-type are proven. Superconvergence at the time nodes is addressed briefly. The error analysis can be extended to discontinuous and enriched Galerkin space discretizations. The error estimates are confirmed by numerical experiments.
In recent work (Maierhofer & Huybrechs, 2022, Adv. Comput. Math.), the authors showed that least-squares oversampling can improve the convergence properties of collocation methods for boundary integral equations involving operators of certain pseudo-differential form. The underlying principle is that the discrete method approximates a Bubnov$-$Galerkin method in a suitable sense. In the present work, we extend this analysis to the case when the integral operator is perturbed by a compact operator $\mathcal{K}$ which is continuous as a map on Sobolev spaces on the boundary, $\mathcal{K}:H^{p}\rightarrow H^{q}$ for all $p,q\in\mathbb{R}$. This study is complicated by the fact that both the test and trial functions in the discrete Bubnov-Galerkin orthogonality conditions are modified over the unperturbed setting. Our analysis guarantees that previous results concerning optimal convergence rates and sufficient rates of oversampling are preserved in the more general case. Indeed, for the first time, this analysis provides a complete explanation of the advantages of least-squares oversampled collocation for boundary integral formulations of the Laplace equation on arbitrary smooth Jordan curves in 2D. Our theoretical results are shown to be in very good agreement with numerical experiments.
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.