亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Albeit progress has been made in Composed Image Retrieval (CIR), we empirically find that a certain percentage of failure retrieval results are not consistent with their relative captions. To address this issue, this work provides a Visual Question Answering (VQA) perspective to boost the performance of CIR. The resulting VQA4CIR is a post-processing approach and can be directly plugged into existing CIR methods. Given the top-C retrieved images by a CIR method, VQA4CIR aims to decrease the adverse effect of the failure retrieval results being inconsistent with the relative caption. To find the retrieved images inconsistent with the relative caption, we resort to the "QA generation to VQA" self-verification pipeline. For QA generation, we suggest fine-tuning LLM (e.g., LLaMA) to generate several pairs of questions and answers from each relative caption. We then fine-tune LVLM (e.g., LLaVA) to obtain the VQA model. By feeding the retrieved image and question to the VQA model, one can find the images inconsistent with relative caption when the answer by VQA is inconsistent with the answer in the QA pair. Consequently, the CIR performance can be boosted by modifying the ranks of inconsistently retrieved images. Experimental results show that our proposed method outperforms state-of-the-art CIR methods on the CIRR and Fashion-IQ datasets.

相關內容

視(shi)覺問(wen)答(Visual Question Answering,VQA),是(shi)一(yi)種涉及計算機視(shi)覺和自(zi)(zi)然語(yu)(yu)言(yan)處理的學(xue)習(xi)任務(wu)。這(zhe)一(yi)任務(wu)的定義如(ru)下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻譯為(wei)中文:一(yi)個VQA系統以(yi)一(yi)張圖(tu)片和一(yi)個關于這(zhe)張圖(tu)片形(xing)式自(zi)(zi)由、開放(fang)式的自(zi)(zi)然語(yu)(yu)言(yan)問(wen)題作為(wei)輸入,以(yi)生成一(yi)條自(zi)(zi)然語(yu)(yu)言(yan)答案作為(wei)輸出。簡單(dan)來(lai)說,VQA就是(shi)給定的圖(tu)片進行(xing)問(wen)答。

知識薈萃

精(jing)品入門(men)和進階(jie)教程(cheng)、論文和代碼(ma)整理(li)等

更多

查看相關VIP內容、論文、資訊等

In the realm of causal inference, Potential Outcomes (PO) and Structural Causal Models (SCM) are recognized as the principal frameworks.However, when it comes to Layer 3 valuations -- counterfactual queries deeply entwined with individual-level semantics -- both frameworks encounter limitations due to the degenerative issues brought forth by the consistency rule. This paper advocates for the Distribution-consistency Structural Causal Models (DiscoSCM) framework as a pioneering approach to counterfactual inference, skillfully integrating the strengths of both PO and SCM. The DiscoSCM framework distinctively incorporates a unit selection variable $U$ and embraces the concept of uncontrollable exogenous noise realization. Through personalized incentive scenarios, we demonstrate the inadequacies of PO and SCM frameworks in representing the probability of a user being a complier (a Layer 3 event) without degeneration, an issue adeptly resolved by adopting the assumption of independent counterfactual noises within DiscoSCM. This innovative assumption broadens the foundational counterfactual theory, facilitating the extension of numerous theoretical results regarding the probability of causation to an individual granularity level and leading to a comprehensive set of theories on heterogeneous counterfactual bounds. Ultimately, our paper posits that if one acknowledges and wishes to leverage the ubiquitous heterogeneity, understanding causality as invariance across heterogeneous units, then DiscoSCM stands as a significant advancement in the methodology of counterfactual inference.

In this study, we aim to reduce generation latency for Named Entity Recognition (NER) with Large Language Models (LLMs). The main cause of high latency in LLMs is the sequential decoding process, which autoregressively generates all labels and mentions for NER, significantly increase the sequence length. To this end, we introduce Parallel Decoding in LLM for NE} (PaDeLLM-NER), a approach that integrates seamlessly into existing generative model frameworks without necessitating additional modules or architectural modifications. PaDeLLM-NER allows for the simultaneous decoding of all mentions, thereby reducing generation latency. Experiments reveal that PaDeLLM-NER significantly increases inference speed that is 1.76 to 10.22 times faster than the autoregressive approach for both English and Chinese. Simultaneously it maintains the quality of predictions as evidenced by the performance that is on par with the state-of-the-art across various datasets.

In this study, we introduce BirdNeRF, an adaptation of Neural Radiance Fields (NeRF) designed specifically for reconstructing large-scale scenes using aerial imagery. Unlike previous research focused on small-scale and object-centric NeRF reconstruction, our approach addresses multiple challenges, including (1) Addressing the issue of slow training and rendering associated with large models. (2) Meeting the computational demands necessitated by modeling a substantial number of images, requiring extensive resources such as high-performance GPUs. (3) Overcoming significant artifacts and low visual fidelity commonly observed in large-scale reconstruction tasks due to limited model capacity. Specifically, we present a novel bird-view pose-based spatial decomposition algorithm that decomposes a large aerial image set into multiple small sets with appropriately sized overlaps, allowing us to train individual NeRFs of sub-scene. This decomposition approach not only decouples rendering time from the scene size but also enables rendering to scale seamlessly to arbitrarily large environments. Moreover, it allows for per-block updates of the environment, enhancing the flexibility and adaptability of the reconstruction process. Additionally, we propose a projection-guided novel view re-rendering strategy, which aids in effectively utilizing the independently trained sub-scenes to generate superior rendering results. We evaluate our approach on existing datasets as well as against our own drone footage, improving reconstruction speed by 10x over classical photogrammetry software and 50x over state-of-the-art large-scale NeRF solution, on a single GPU with similar rendering quality.

The Convolutional Neural Network (CNN) has emerged as a powerful and versatile tool for artificial intelligence (AI) applications. Conventional computing architectures face challenges in meeting the demanding processing requirements of compute-intensive CNN applications, as they suffer from limited throughput and low utilization. To this end, specialized accelerators have been developed to speed up CNN computations. However, as we demonstrate in this paper via extensive design space exploration, different neural network models have different characteristics, which calls for different accelerator architectures and configurations to match their computing demand. We show that a one-size-fits-all fixed architecture does not guarantee optimal power/energy/performance trade-off. To overcome this challenge, this paper proposes ARMAN, a novel reconfigurable systolic-array-based accelerator architecture based on Monolithic 3D (M3D) technology for CNN inference. The proposed accelerator offers the flexibility to reconfigure among different scale-up or scale-out arrangements depending on the neural network structure, providing the optimal trade-off across power, energy, and performance for various neural network models. We demonstrate the effectiveness of our approach through evaluations of multiple benchmarks. The results demonstrate that the proposed accelerator exhibits up to 2x, 2.24x, 1.48x, and 2x improvements in terms of execution cycles, power, energy, and EDP respectively, over the non-configurable architecture.

In this article, we propose the novel concept of Belief Scene Graphs, which are utility-driven extensions of partial 3D scene graphs, that enable efficient high-level task planning with partial information. We propose a graph-based learning methodology for the computation of belief (also referred to as expectation) on any given 3D scene graph, which is then used to strategically add new nodes (referred to as blind nodes) that are relevant for a robotic mission. We propose the method of Computation of Expectation based on Correlation Information (CECI), to reasonably approximate real Belief/Expectation, by learning histograms from available training data. A novel Graph Convolutional Neural Network (GCN) model is developed, to learn CECI from a repository of 3D scene graphs. As no database of 3D scene graphs exists for the training of the novel CECI model, we present a novel methodology for generating a 3D scene graph dataset based on semantically annotated real-life 3D spaces. The generated dataset is then utilized to train the proposed CECI model and for extensive validation of the proposed method. We establish the novel concept of \textit{Belief Scene Graphs} (BSG), as a core component to integrate expectations into abstract representations. This new concept is an evolution of the classical 3D scene graph concept and aims to enable high-level reasoning for the task planning and optimization of a variety of robotics missions. The efficacy of the overall framework has been evaluated in an object search scenario, and has also been tested on a real-life experiment to emulate human common sense of unseen-objects.

Autonomous agents based on Large Language Models (LLMs) that devise plans and tackle real-world challenges have gained prominence.However, tailoring these agents for specialized domains like quantitative investment remains a formidable task. The core challenge involves efficiently building and integrating a domain-specific knowledge base for the agent's learning process. This paper introduces a principled framework to address this challenge, comprising a two-layer loop.In the inner loop, the agent refines its responses by drawing from its knowledge base, while in the outer loop, these responses are tested in real-world scenarios to automatically enhance the knowledge base with new insights.We demonstrate that our approach enables the agent to progressively approximate optimal behavior with provable efficiency.Furthermore, we instantiate this framework through an autonomous agent for mining trading signals named QuantAgent. Empirical results showcase QuantAgent's capability in uncovering viable financial signals and enhancing the accuracy of financial forecasts.

As Graph Neural Networks (GNNs) become popular, libraries like PyTorch-Geometric (PyG) and Deep Graph Library (DGL) are proposed; these libraries have emerged as the de facto standard for implementing GNNs because they provide graph-oriented APIs and are purposefully designed to manage the inherent sparsity and irregularity in graph structures. However, these libraries show poor scalability on multi-core processors, which under-utilizes the available platform resources and limits the performance. This is because GNN training is a resource-intensive workload with high volume of irregular data accessing, and existing libraries fail to utilize the memory bandwidth efficiently. To address this challenge, we propose ARGO, a novel runtime system for GNN training that offers scalable performance. ARGO exploits multi-processing and core-binding techniques to improve platform resource utilization. We further develop an auto-tuner that searches for the optimal configuration for multi-processing and core-binding. The auto-tuner works automatically, making it completely transparent from the user. Furthermore, the auto-tuner allows ARGO to adapt to various platforms, GNN models, datasets, etc. We evaluate ARGO on two representative GNN models and four widely-used datasets on two platforms. With the proposed autotuner, ARGO is able to select a near-optimal configuration by exploring only 5% of the design space. ARGO speeds up state-of-the-art GNN libraries by up to 5.06x and 4.54x on a four-socket Ice Lake machine with 112 cores and a two-socket Sapphire Rapids machine with 64 cores, respectively. Finally, ARGO can seamlessly integrate into widely-used GNN libraries (e.g., DGL, PyG) with few lines of code and speed up GNN training.

In recent years, Face Image Quality Assessment (FIQA) has become an indispensable part of the face recognition system to guarantee the stability and reliability of recognition performance in an unconstrained scenario. For this purpose, the FIQA method should consider both the intrinsic property and the recognizability of the face image. Most previous works aim to estimate the sample-wise embedding uncertainty or pair-wise similarity as the quality score, which only considers the information from partial intra-class. However, these methods ignore the valuable information from the inter-class, which is for estimating to the recognizability of face image. In this work, we argue that a high-quality face image should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus, we propose a novel unsupervised FIQA method that incorporates Similarity Distribution Distance for Face Image Quality Assessment (SDD-FIQA). Our method generates quality pseudo-labels by calculating the Wasserstein Distance (WD) between the intra-class similarity distributions and inter-class similarity distributions. With these quality pseudo-labels, we are capable of training a regression network for quality prediction. Extensive experiments on benchmark datasets demonstrate that the proposed SDD-FIQA surpasses the state-of-the-arts by an impressive margin. Meanwhile, our method shows good generalization across different recognition systems.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.

北京阿比特科技有限公司