Monocular depth inference is a fundamental problem for scene perception of robots. Specific robots may be equipped with a camera plus an optional depth sensor of any type and located in various scenes of different scales, whereas recent advances derived multiple individual sub-tasks. It leads to additional burdens to fine-tune models for specific robots and thereby high-cost customization in large-scale industrialization. This paper investigates a unified task of monocular depth inference, which infers high-quality depth maps from all kinds of input raw data from various robots in unseen scenes. A basic benchmark G2-MonoDepth is developed for this task, which comprises four components: (a) a unified data representation RGB+X to accommodate RGB plus raw depth with diverse scene scale/semantics, depth sparsity ([0%, 100%]) and errors (holes/noises/blurs), (b) a novel unified loss to adapt to diverse depth sparsity/errors of input raw data and diverse scales of output scenes, (c) an improved network to well propagate diverse scene scales from input to output, and (d) a data augmentation pipeline to simulate all types of real artifacts in raw depth maps for training. G2-MonoDepth is applied in three sub-tasks including depth estimation, depth completion with different sparsity, and depth enhancement in unseen scenes, and it always outperforms SOTA baselines on both real-world data and synthetic data.
Collaborative robots (cobots) are widely used in industrial applications, yet extensive research is still needed to enhance human-robot collaborations and operator experience. A potential approach to improve the collaboration experience involves adapting cobot behavior based on natural cues from the operator. Inspired by the literature on human-human interactions, we conducted a wizard-of-oz study to examine whether a gaze towards the cobot can serve as a trigger for initiating joint activities in collaborative sessions. In this study, 37 participants engaged in an assembly task while their gaze behavior was analyzed. We employ a gaze-based attention recognition model to identify when the participants look at the cobot. Our results indicate that in most cases (84.88\%), the joint activity is preceded by a gaze towards the cobot. Furthermore, during the entire assembly cycle, the participants tend to look at the cobot around the time of the joint activity. To the best of our knowledge, this is the first study to analyze the natural gaze behavior of participants working on a joint activity with a robot during a collaborative assembly task.
Community detection is the problem of identifying natural divisions in networks. Efficient parallel algorithms for identifying such divisions is critical in a number of applications, where the size of datasets have reached significant scales. This technical report presents an optimized parallel implementation of Louvain, a high quality community detection method, for shared memory multicore systems. On a server equipped with dual 16-core Intel Xeon Gold 6226R processors, our Louvain, which we term as GVE-Louvain, outperforms Vite, Grappolo, and NetworKit Louvain by 50x, 22x, and 20x respectively - achieving a processing rate of 560M edges/s on a 3.8B edge graph. In addition, GVE-Louvain improves performance at an average rate of 1.6x for every doubling of threads.
The fairness of Natural Language Processing (NLP) models has emerged as a crucial concern. Information theory indicates that to achieve fairness, a model should not be able to predict sensitive variables, such as gender, ethnicity, and age. However, information related to these variables often appears implicitly in language, posing a challenge in identifying and mitigating biases effectively. To tackle this issue, we present a novel approach that operates at the embedding level of an NLP model, independent of the specific architecture. Our method leverages insights from recent advances in XAI techniques and employs an embedding transformation to eliminate implicit information from a selected variable. By directly manipulating the embeddings in the final layer, our approach enables a seamless integration into existing models without requiring significant modifications or retraining. In evaluation, we show that the proposed post-hoc approach significantly reduces gender-related associations in NLP models while preserving the overall performance and functionality of the models. An implementation of our method is available: //github.com/fanny-jourdan/TaCo
Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in their capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications such as healthcare and finance -- where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives -- including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially because GPT-4 follows (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at //decodingtrust.github.io/. Additionally, our dataset can be previewed at //huggingface.co/datasets/AI-Secure/DecodingTrust, and a concise version of our DecodingTrust is accessible at //openreview.net/pdf?id=kaHpo8OZw2.
The research study of detecting multiple intents and filling slots is becoming more popular because of its relevance to complicated real-world situations. Recent advanced approaches, which are joint models based on graphs, might still face two potential issues: (i) the uncertainty introduced by constructing graphs based on preliminary intents and slots, which may transfer intent-slot correlation information to incorrect label node destinations, and (ii) direct incorporation of multiple intent labels for each token w.r.t. token-level intent voting might potentially lead to incorrect slot predictions, thereby hurting the overall performance. To address these two issues, we propose a joint model named MISCA. Our MISCA introduces an intent-slot co-attention mechanism and an underlying layer of label attention mechanism. These mechanisms enable MISCA to effectively capture correlations between intents and slot labels, eliminating the need for graph construction. They also facilitate the transfer of correlation information in both directions: from intents to slots and from slots to intents, through multiple levels of label-specific representations, without relying on token-level intent information. Experimental results show that MISCA outperforms previous models, achieving new state-of-the-art overall accuracy performances on two benchmark datasets MixATIS and MixSNIPS. This highlights the effectiveness of our attention mechanisms.
We study the problem of hanging a wide range of grasped objects on diverse supporting items. Hanging objects is a ubiquitous task that is encountered in numerous aspects of our everyday lives. However, both the objects and supporting items can exhibit substantial variations in their shapes and structures, bringing two challenging issues: (1) determining the task-relevant geometric structures across different objects and supporting items, and (2) identifying a robust action sequence to accommodate the shape variations of supporting items. To this end, we propose Semantic Keypoint Trajectory (SKT), an object-agnostic representation that is highly versatile and applicable to various everyday objects. We also propose Shape-conditioned Trajectory Deformation Network (SCTDN), a model that learns to generate SKT by deforming a template trajectory based on the task-relevant geometric structure features of the supporting items. We conduct extensive experiments and demonstrate substantial improvements in our framework over existing robot hanging methods in the success rate and inference time. Finally, our simulation-trained framework shows promising hanging results in the real world. For videos and supplementary materials, please visit our project webpage: //hcis-lab.github.io/SKT-Hang/.
Recent studies have shown that attackers can catastrophically reduce the performance of GNNs by maliciously modifying the graph structure or node features on the graph. Adversarial training, which has been shown to be one of the most effective defense mechanisms against adversarial attacks in computer vision, holds great promise for enhancing the robustness of GNNs. There is limited research on defending against attacks by performing adversarial training on graphs, and it is crucial to delve deeper into this approach to optimize its effectiveness. Therefore, based on robust adversarial training on graphs, we propose a hierarchical constraint refinement framework (HC-Ref) that enhances the anti-perturbation capabilities of GNNs and downstream classifiers separately, ultimately leading to improved robustness. We propose corresponding adversarial regularization terms that are conducive to adaptively narrowing the domain gap between the normal part and the perturbation part according to the characteristics of different layers, promoting the smoothness of the predicted distribution of both parts. Moreover, existing research on graph robust adversarial training primarily concentrates on training from the standpoint of node feature perturbations and seldom takes into account alterations in the graph structure. This limitation makes it challenging to prevent attacks based on topological changes in the graph. This paper generates adversarial examples by utilizing graph structure perturbations, offering an effective approach to defend against attack methods that are based on topological changes. Extensive experiments on two real-world graph benchmarks show that HC-Ref successfully resists various attacks and has better node classification performance compared to several baseline methods.
Stable diffusion is the mainstay of the text-to-image (T2I) synthesis in the community due to its generation performance and open-source nature. Recently, Stable Diffusion XL (SDXL), the successor of stable diffusion, has received a lot of attention due to its significant performance improvements with a higher resolution of 1024x1024 and a larger model. However, its increased computation cost and model size require higher-end hardware(e.g., bigger VRAM GPU) for end-users, incurring higher costs of operation. To address this problem, in this work, we propose an efficient latent diffusion model for text-to-image synthesis obtained by distilling the knowledge of SDXL. To this end, we first perform an in-depth analysis of the denoising U-Net in SDXL, which is the main bottleneck of the model, and then design a more efficient U-Net based on the analysis. Secondly, we explore how to effectively distill the generation capability of SDXL into an efficient U-Net and eventually identify four essential factors, the core of which is that self-attention is the most important part. With our efficient U-Net and self-attention-based knowledge distillation strategy, we build our efficient T2I models, called KOALA-1B & -700M, while reducing the model size up to 54% and 69% of the original SDXL model. In particular, the KOALA-700M is more than twice as fast as SDXL while still retaining a decent generation quality. We hope that due to its balanced speed-performance tradeoff, our KOALA models can serve as a cost-effective alternative to SDXL in resource-constrained environments.
With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.