Continuous normalizing flows are widely used in generative tasks, where a flow network transports from a data distribution $P$ to a normal distribution. A flow model that transports from $P$ to an arbitrary $Q$, where both $P$ and $Q$ are accessible via finite samples, is of various application interests, particularly in the recently developed telescoping density ratio estimation (DRE) which calls for the construction of intermediate densities to bridge between the two densities. In this work, we propose such a flow by a neural-ODE model which is trained from empirical samples to transport invertibly from $P$ to $Q$ (and vice versa) and optimally by minimizing the transport cost. The trained flow model allows us to perform infinitesimal DRE along the time-parametrized $\log$-density by training an additional continuous-time network using classification loss, whose time integration provides a telescopic DRE. The effectiveness of the proposed model is empirically demonstrated on high-dimensional mutual information estimation and energy-based generative models of image data.
We study distributed estimation and learning problems in a networked environment in which agents exchange information to estimate unknown statistical properties of random variables from their privately observed samples. By exchanging information about their private observations, the agents can collectively estimate the unknown quantities, but they also face privacy risks. The goal of our aggregation schemes is to combine the observed data efficiently over time and across the network, while accommodating the privacy needs of the agents and without any coordination beyond their local neighborhoods. Our algorithms enable the participating agents to estimate a complete sufficient statistic from private signals that are acquired offline or online over time, and to preserve the privacy of their signals and network neighborhoods. This is achieved through linear aggregation schemes with adjusted randomization schemes that add noise to the exchanged estimates subject to differential privacy (DP) constraints. In every case, we demonstrate the efficiency of our algorithms by proving convergence to the estimators of a hypothetical, omniscient observer that has central access to all of the signals. We also provide convergence rate analysis and finite-time performance guarantees and show that the noise that minimizes the convergence time to the best estimates is the Laplace noise, with parameters corresponding to each agent's sensitivity to their signal and network characteristics. Finally, to supplement and validate our theoretical results, we run experiments on real-world data from the US Power Grid Network and electric consumption data from German Households to estimate the average power consumption of power stations and households under all privacy regimes.
We propose a new algorithm for variance reduction when estimating $f(X_T)$ where $X$ is the solution to some stochastic differential equation and $f$ is a test function. The new estimator is $(f(X^1_T) + f(X^2_T))/2$, where $X^1$ and $X^2$ have same marginal law as $X$ but are pathwise correlated so that to reduce the variance. The optimal correlation function $\rho$ is approximated by a deep neural network and is calibrated along the trajectories of $(X^1, X^2)$ by policy gradient and reinforcement learning techniques. Finding an optimal coupling given marginal laws has links with maximum optimal transport.
We consider covariance estimation of any subgaussian distribution from finitely many i.i.d. samples that are quantized to one bit of information per entry. Recent work has shown that a reliable estimator can be constructed if uniformly distributed dithers on $[-\lambda,\lambda]$ are used in the one-bit quantizer. This estimator enjoys near-minimax optimal, non-asymptotic error estimates in the operator and Frobenius norms if $\lambda$ is chosen proportional to the largest variance of the distribution. However, this quantity is not known a-priori, and in practice $\lambda$ needs to be carefully tuned to achieve good performance. In this work we resolve this problem by introducing a tuning-free variant of this estimator, which replaces $\lambda$ by a data-driven quantity. We prove that this estimator satisfies the same non-asymptotic error estimates - up to small (logarithmic) losses and a slightly worse probability estimate. Our proof relies on a new version of the Burkholder-Rosenthal inequalities for matrix martingales, which is expected to be of independent interest.
Knitting interloops one-dimensional yarns into three-dimensional fabrics that exhibit behaviours beyond their constitutive materials. How extensibility and anisotropy emerge from the hierarchical organization of yarns into knitted fabrics has long been unresolved. We sought to unravel the mechanical roles of tensile mechanics, assembly and dynamics arising from the yarn level on fabric nonlinearity by developing a yarn-based dynamical model. This physically validated model captures the fundamental mechanical response of knitted fabrics, analogous to flexible metamaterials and biological fiber networks due to geometric nonlinearity within such hierarchical systems. We identify the dictating factors of the mechanics of knitted fabrics, highlighting the previously overlooked but critical effect of pre-tension. Fabric anisotropy originates from observed yarn--yarn rearrangements during alignment dynamics and is topology-dependent. This yarn-based model also provides design flexibility of knitted fabrics to embed functionalities by allowing variation in both geometric configuration and material property. Our hierarchical approach to build up a knitted fabrics computationally modernizes an ancient craft and represents a first step towards mechanical programmability of knitted fabrics in wide engineering applications.
We review Quasi Maximum Likelihood estimation of factor models for high-dimensional panels of time series. We consider two cases: (1) estimation when no dynamic model for the factors is specified (Bai and Li, 2012, 2016); (2) estimation based on the Kalman smoother and the Expectation Maximization algorithm thus allowing to model explicitly the factor dynamics (Doz et al., 2012, Barigozzi and Luciani, 2019). Our interest is in approximate factor models, i.e., when we allow for the idiosyncratic components to be mildly cross-sectionally, as well as serially, correlated. Although such setting apparently makes estimation harder, we show, in fact, that factor models do not suffer of the curse of dimensionality problem, but instead they enjoy a blessing of dimensionality property. In particular, given an approximate factor structure, if the cross-sectional dimension of the data, $N$, grows to infinity, we show that: (i) identification of the model is still possible, (ii) the mis-specification error due to the use of an exact factor model log-likelihood vanishes. Moreover, if we let also the sample size, $T$, grow to infinity, we can also consistently estimate all parameters of the model and make inference. The same is true for estimation of the latent factors which can be carried out by weighted least-squares, linear projection, or Kalman filtering/smoothing. We also compare the approaches presented with: Principal Component analysis and the classical, fixed $N$, exact Maximum Likelihood approach. We conclude with a discussion on efficiency of the considered estimators
Entanglement represents ``\textit{the}'' key resource for several applications of quantum information processing, ranging from quantum communications to distributed quantum computing. Despite its fundamental importance, deterministic generation of maximally entangled qubits represents an on-going open problem. Here, we design a novel generation scheme exhibiting two attractive features, namely, i) deterministically generating different classes -- namely, GHZ-like, W-like and graph states -- of genuinely multipartite entangled states, ii) without requiring any direct interaction between the qubits. Indeed, the only necessary condition is the possibility of coherently controlling -- according to the indefinite causal order framework -- the causal order among the unitaries acting on the qubits. Through the paper, we analyze and derive the conditions on the unitaries for deterministic generation, and we provide examples for unitaries practical implementation. We conclude the paper by discussing the scalability of the proposed scheme to higher dimensional genuine multipartite entanglement (GME) states and by introducing some possible applications of the proposal for quantum networks.
The number of modes in a probability density function is representative of the model's complexity and can also be viewed as the number of existing subpopulations. Despite its relevance, little research has been devoted to its estimation. Focusing on the univariate setting, we propose a novel approach targeting prediction accuracy inspired by some overlooked aspects of the problem. We argue for the need for structure in the solutions, the subjective and uncertain nature of modes, and the convenience of a holistic view blending global and local density properties. Our method builds upon a combination of flexible kernel estimators and parsimonious compositional splines. Feature exploration, model selection and mode testing are implemented in the Bayesian inference paradigm, providing soft solutions and allowing to incorporate expert judgement in the process. The usefulness of our proposal is illustrated through a case study in sports analytics, showcasing multiple companion visualisation tools. A thorough simulation study demonstrates that traditional modality-driven approaches paradoxically struggle to provide accurate results. In this context, our method emerges as a top-tier alternative offering innovative solutions for analysts.
Sampling from diffusion probabilistic models (DPMs) can be viewed as a piecewise distribution transformation, which generally requires hundreds or thousands of steps of the inverse diffusion trajectory to get a high-quality image. Recent progress in designing fast samplers for DPMs achieves a trade-off between sampling speed and sample quality by knowledge distillation or adjusting the variance schedule or the denoising equation. However, it can't be optimal in both aspects and often suffer from mode mixture in short steps. To tackle this problem, we innovatively regard inverse diffusion as an optimal transport (OT) problem between latents at different stages and propose the DPM-OT, a unified learning framework for fast DPMs with a direct expressway represented by OT map, which can generate high-quality samples within around 10 function evaluations. By calculating the semi-discrete optimal transport map between the data latents and the white noise, we obtain an expressway from the prior distribution to the data distribution, while significantly alleviating the problem of mode mixture. In addition, we give the error bound of the proposed method, which theoretically guarantees the stability of the algorithm. Extensive experiments validate the effectiveness and advantages of DPM-OT in terms of speed and quality (FID and mode mixture), thus representing an efficient solution for generative modeling. Source codes are available at //github.com/cognaclee/DPM-OT
Understanding dynamics in complex systems is challenging because there are many degrees of freedom, and those that are most important for describing events of interest are often not obvious. The leading eigenfunctions of the transition operator are useful for visualization, and they can provide an efficient basis for computing statistics such as the likelihood and average time of events (predictions). Here we develop inexact iterative linear algebra methods for computing these eigenfunctions (spectral estimation) and making predictions from a data set of short trajectories sampled at finite intervals. We demonstrate the methods on a low-dimensional model that facilitates visualization and a high-dimensional model of a biomolecular system. Implications for the prediction problem in reinforcement learning are discussed.
Human pose estimation aims to locate the human body parts and build human body representation (e.g., body skeleton) from input data such as images and videos. It has drawn increasing attention during the past decade and has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality. Although the recently developed deep learning-based solutions have achieved high performance in human pose estimation, there still remain challenges due to insufficient training data, depth ambiguities, and occlusions. The goal of this survey paper is to provide a comprehensive review of recent deep learning-based solutions for both 2D and 3D pose estimation via a systematic analysis and comparison of these solutions based on their input data and inference procedures. More than 240 research papers since 2014 are covered in this survey. Furthermore, 2D and 3D human pose estimation datasets and evaluation metrics are included. Quantitative performance comparisons of the reviewed methods on popular datasets are summarized and discussed. Finally, the challenges involved, applications, and future research directions are concluded. We also provide a regularly updated project page on: \url{//github.com/zczcwh/DL-HPE}