亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we consider the weighted $k$-Hamming and $k$-Edit distances, that are natural generalizations of the classical Hamming and Edit distances. As main results of this paper we prove that for any $k\geq 2$ the DECIS-$k$-Hamming problem is $\mathbb{P}$-SPACE-complete and the DECIS-$k$-Edit problem is NEXPTIME-complete.

相關內容

This paper addresses the challenges of real-time, large-scale, and near-optimal multi-agent pathfinding (MAPF) through enhancements to the recently proposed LaCAM* algorithm. LaCAM* is a scalable search-based algorithm that guarantees the eventual finding of optimal solutions for cumulative transition costs. While it has demonstrated remarkable planning success rates, surpassing various state-of-the-art MAPF methods, its initial solution quality is far from optimal, and its convergence speed to the optimum is slow. To overcome these limitations, this paper introduces several improvement techniques, partly drawing inspiration from other MAPF methods. We provide empirical evidence that the fusion of these techniques significantly improves the solution quality of LaCAM*, thus further pushing the boundaries of MAPF algorithms.

We propose and analyse an explicit boundary-preserving scheme for the strong approximations of some SDEs with non-globally Lipschitz drift and diffusion coefficients whose state-space is bounded. The scheme consists of a Lamperti transform followed by a Lie--Trotter splitting. We prove $L^{p}(\Omega)$-convergence of order $1$, for every $p \in \mathbb{N}$, of the scheme and exploit the Lamperti transform to confine the numerical approximations to the state-space of the considered SDE. We provide numerical experiments that confirm the theoretical results and compare the proposed Lamperti-splitting scheme to other numerical schemes for SDEs.

We consider the Max-$3$-Section problem, where we are given an undirected graph $ G=(V,E)$ equipped with non-negative edge weights $w :E\rightarrow \mathbb{R}_+$ and the goal is to find a partition of $V$ into three equisized parts while maximizing the total weight of edges crossing between different parts. Max-$3$-Section is closely related to other well-studied graph partitioning problems, e.g., Max-$k$-Cut, Max-$3$-Cut, and Max-Bisection. We present a polynomial time algorithm achieving an approximation of $ 0.795$, that improves upon the previous best known approximation of $ 0.673$. The requirement of multiple parts that have equal sizes renders Max-$3$-Section much harder to cope with compared to, e.g., Max-Bisection. We show a new algorithm that combines the existing approach of Lassere hierarchy along with a random cut strategy that suffices to give our result.

Kalai's $3^d$-conjecture states that every centrally symmetric $d$-polytope has at least $3^d$ faces. We give short proofs for two special cases: if $P$ is unconditional (that is, invariant w.r.t. reflection in any coordinate hyperplane), and more generally, if $P$ is locally anti-blocking (that is, looks like an unconditional polytope in every orthant). In both cases we show that the minimum is attained exactly for the Hanner polytopes.

This paper presents VoxelMap++: a voxel mapping method with plane merging which can effectively improve the accuracy and efficiency of LiDAR(-inertial) based simultaneous localization and mapping (SLAM). This map is a collection of voxels that contains one plane feature with 3DOF representation and corresponding covariance estimation. Considering total map will contain a large number of coplanar features (kid planes), these kid planes' 3DOF estimation can be regarded as the measurements with covariance of a larger plane (father plane). Thus, we design a plane merging module based on union-find which can save resources and further improve the accuracy of plane fitting. This module can distinguish the kid planes in different voxels and merge these kid planes to estimate the father plane. After merging, the father plane 3DOF representation will be more accurate than the kids plane and the uncertainty will decrease significantly which can further improve the performance of LiDAR(-inertial) odometry. Experiments on challenging environments such as corridors and forests demonstrate the high accuracy and efficiency of our method compared to other state-of-the-art methods (see our attached video). By the way, our implementation VoxelMap++ is open-sourced on GitHub which is applicable for both non-repetitive scanning LiDARs and traditional scanning LiDAR.

Hierarchical least-squares programs with linear constraints (HLSP) are a type of optimization problem very common in robotics. Each priority level contains an objective in least-squares form which is subject to the linear constraints of the higher priority levels. Active-set methods are a popular choice for solving them. However, they can perform poorly in terms of computational time if there are large changes of the active set. We therefore propose a computationally efficient primal-dual interior-point method (IPM) for dense HLSP's which is able to maintain constant numbers of solver iterations in these situations. We base our IPM on the computationally efficient nullspace method as it requires only a single matrix factorization per solver iteration instead of two as it is the case for other IPM formulations. We show that the resulting normal equations can be expressed in least-squares form. This avoids the formation of the quadratic Lagrangian Hessian and can possibly maintain high levels of sparsity. Our solver reliably solves ill-posed instantaneous hierarchical robot control problems without exhibiting the large variations in computation time seen in active-set methods.

This paper concerns an expansion of first-order Belnap-Dunn logic which is called $\mathrm{BD}^{\supset,\mathsf{F}}$. Its connectives and quantifiers are all familiar from classical logic and its logical consequence relation is very closely connected to the one of classical logic. Results that convey this close connection are established. Fifteen classical laws of logical equivalence are used to distinguish $\mathrm{BD}^{\supset,\mathsf{F}}$ from all other four-valued logics with the same connectives and quantifiers whose logical consequence relation is as closely connected to the logical consequence relation of classical logic. It is shown that several interesting non-classical connectives added to Belnap-Dunn logic in its expansions that have been studied earlier are definable in $\mathrm{BD}^{\supset,\mathsf{F}}$. It is also established that $\mathrm{BD}^{\supset,\mathsf{F}}$ is both paraconsistent and paracomplete. Moreover, a sequent calculus proof system that is sound and complete with respect to the logical consequence relation of $\mathrm{BD}^{\supset,\mathsf{F}}$ is presented.

Symmetric powers are an important notion in mathematics, computer science and physics. In mathematics, they are used to build symmetric algebras, in computer science, to build free exponential modalities of linear logic and in physics, Fock spaces. We study symmetric powers through the lens of category theory. We focus here on the simpler case where nonnegative rational scalars are available ie. we study symmetric powers in symmetric monoidal $\mathbb{Q}_{\ge 0}$-linear categories. Among the developments, a main point is the introduction of the notion of binomial graded bimonoid and the associated string diagrams which characterize symmetric powers in this setting.

We consider the bimodal language, where the first modality is interpreted by a binary relation in the standard way, and the second is interpreted by the relation of inequality. It follows from Hughes (1990), that in this language, non-$k$-colorability of a graph is expressible for every finite $k$. We show that modal logics of classes of non-$k$-colorable graphs (directed or non-directed), and some of their extensions, are decidable.

For a large class of random constraint satisfaction problems (CSP), deep but non-rigorous theory from statistical physics predict the location of the sharp satisfiability transition. The works of Ding, Sly, Sun (2014, 2016) and Coja-Oghlan, Panagiotou (2014) established the satisfiability threshold for random regular $k$-NAE-SAT, random $k$-SAT, and random regular $k$-SAT for large enough $k\geq k_0$ where $k_0$ is a large non-explicit constant. Establishing the same for small values of $k\geq 3$ remains an important open problem in the study of random CSPs. In this work, we study two closely related models of random CSPs, namely the $2$-coloring on random $d$-regular $k$-uniform hypergraphs and the random $d$-regular $k$-NAE-SAT model. For every $k\geq 3$, we prove that there is an explicit $d_{\ast}(k)$ which gives a satisfiability upper bound for both of the models. Our upper bound $d_{\ast}(k)$ for $k\geq 3$ matches the prediction from statistical physics for the hypergraph $2$-coloring by Dall'Asta, Ramezanpour, Zecchina (2008), thus conjectured to be sharp. Moreover, $d_{\ast}(k)$ coincides with the satisfiability threshold of random regular $k$-NAE-SAT for large enough $k\geq k_0$ by Ding, Sly, Sun (2014).

北京阿比特科技有限公司