We propose a hierarchical tensor-network approach for approximating high-dimensional probability density via empirical distribution. This leverages randomized singular value decomposition (SVD) techniques and involves solving linear equations for tensor cores in this tensor network. The complexity of the resulting algorithm scales linearly in the dimension of the high-dimensional density. An analysis of estimation error demonstrates the effectiveness of this method through several numerical experiments.
Datasets with sheer volume have been generated from fields including computer vision, medical imageology, and astronomy whose large-scale and high-dimensional properties hamper the implementation of classical statistical models. To tackle the computational challenges, one of the efficient approaches is subsampling which draws subsamples from the original large datasets according to a carefully-design task-specific probability distribution to form an informative sketch. The computation cost is reduced by applying the original algorithm to the substantially smaller sketch. Previous studies associated with subsampling focused on non-regularized regression from the computational efficiency and theoretical guarantee perspectives, such as ordinary least square regression and logistic regression. In this article, we introduce a randomized algorithm under the subsampling scheme for the Elastic-net regression which gives novel insights into L1-norm regularized regression problem. To effectively conduct consistency analysis, a smooth approximation technique based on alpha absolute function is firstly employed and theoretically verified. The concentration bounds and asymptotic normality for the proposed randomized algorithm are then established under mild conditions. Moreover, an optimal subsampling probability is constructed according to A-optimality. The effectiveness of the proposed algorithm is demonstrated upon synthetic and real data datasets.
In this paper, we propose a general framework for solving high-dimensional partial differential equations with tensor networks. Our approach offers a comprehensive solution methodology, wherein we employ a combination of particle simulations to update the solution and re-estimations of the new solution as a tensor-network using a recently proposed tensor train sketching technique. Our method can also be interpreted as an alternative approach for performing particle number control by assuming the particles originate from an underlying tensor network. We demonstrate the versatility and flexibility of our approach by applying it to two specific scenarios: simulating the Fokker-Planck equation through Langevin dynamics and quantum imaginary time evolution via auxiliary-field quantum Monte Carlo.
The simultaneous estimation of multiple unknown parameters lies at heart of a broad class of important problems across science and technology. Currently, the state-of-the-art performance in the such problems is achieved by nonparametric empirical Bayes methods. However, these approaches still suffer from two major issues. First, they solve a frequentist problem but do so by following Bayesian reasoning, posing a philosophical dilemma that has contributed to somewhat uneasy attitudes toward empirical Bayes methodology. Second, their computation relies on certain density estimates that become extremely unreliable in some complex simultaneous estimation problems. In this paper, we study these issues in the context of the canonical Gaussian sequence problem. We propose an entirely frequentist alternative to nonparametric empirical Bayes methods by establishing a connection between simultaneous estimation and penalized nonparametric regression. We use flexible regularization strategies, such as shape constraints, to derive accurate estimators without appealing to Bayesian arguments. We prove that our estimators achieve asymptotically optimal regret and show that they are competitive with or can outperform nonparametric empirical Bayes methods in simulations and an analysis of spatially resolved gene expression data.
Solving transport problems, i.e. finding a map transporting one given distribution to another, has numerous applications in machine learning. Novel mass transport methods motivated by generative modeling have recently been proposed, e.g. Denoising Diffusion Models (DDMs) and Flow Matching Models (FMMs) implement such a transport through a Stochastic Differential Equation (SDE) or an Ordinary Differential Equation (ODE). However, while it is desirable in many applications to approximate the deterministic dynamic Optimal Transport (OT) map which admits attractive properties, DDMs and FMMs are not guaranteed to provide transports close to the OT map. In contrast, Schr\"odinger bridges (SBs) compute stochastic dynamic mappings which recover entropy-regularized versions of OT. Unfortunately, existing numerical methods approximating SBs either scale poorly with dimension or accumulate errors across iterations. In this work, we introduce Iterative Markovian Fitting (IMF), a new methodology for solving SB problems, and Diffusion Schr\"odinger Bridge Matching (DSBM), a novel numerical algorithm for computing IMF iterates. DSBM significantly improves over previous SB numerics and recovers as special/limiting cases various recent transport methods. We demonstrate the performance of DSBM on a variety of problems.
In this work, we propose Functional Flow Matching (FFM), a function-space generative model that generalizes the recently-introduced Flow Matching model to operate directly in infinite-dimensional spaces. Our approach works by first defining a path of probability measures that interpolates between a fixed Gaussian measure and the data distribution, followed by learning a vector field on the underlying space of functions that generates this path of measures. Our method does not rely on likelihoods or simulations, making it well-suited to the function space setting. We provide both a theoretical framework for building such models and an empirical evaluation of our techniques. We demonstrate through experiments on synthetic and real-world benchmarks that our proposed FFM method outperforms several recently proposed function-space generative models.
Score-based generative models are a popular class of generative modelling techniques relying on stochastic differential equations (SDE). From their inception, it was realized that it was also possible to perform generation using ordinary differential equations (ODE) rather than SDE. This led to the introduction of the probability flow ODE approach and denoising diffusion implicit models. Flow matching methods have recently further extended these ODE-based approaches and approximate a flow between two arbitrary probability distributions. Previous work derived bounds on the approximation error of diffusion models under the stochastic sampling regime, given assumptions on the $L^2$ loss. We present error bounds for the flow matching procedure using fully deterministic sampling, assuming an $L^2$ bound on the approximation error and a certain regularity condition on the data distributions.
Image restoration is a long-standing low-level vision problem, e.g., deblurring and deraining. In the process of image restoration, it is necessary to consider not only the spatial details and contextual information of restoration to ensure the quality, but also the system complexity. Although many methods have been able to guarantee the quality of image restoration, the system complexity of the state-of-the-art (SOTA) methods is increasing as well. Motivated by this, we present a mixed hierarchy network that can balance these competing goals. Our main proposal is a mixed hierarchy architecture, that progressively recovers contextual information and spatial details from degraded images while we design intra-blocks to reduce system complexity. Specifically, our model first learns the contextual information using encoder-decoder architectures, and then combines them with high-resolution branches that preserve spatial detail. In order to reduce the system complexity of this architecture for convenient analysis and comparison, we replace or remove the nonlinear activation function with multiplication and use a simple network structure. In addition, we replace spatial convolution with global self-attention for the middle block of encoder-decoder. The resulting tightly interlinked hierarchy architecture, named as MHNet, delivers strong performance gains on several image restoration tasks, including image deraining, and deblurring.
We present a lightweight system for stereo matching through embedded GPUs. It breaks the trade-off between accuracy and processing speed in stereo matching, enabling our embedded system to further improve the matching accuracy while ensuring real-time processing. The main idea of our method is to construct a tiny neural network based on variational auto-encoder (VAE) to upsample and refinement a small size of coarse disparity map, which is first generated by a traditional matching method. The proposed hybrid structure cannot only bring the advantage of traditional methods in terms of computational complexity, but also ensure the matching accuracy under the impact of neural network. Extensive experiments on the KITTI 2015 benchmark demonstrate that our tiny system exhibits high robustness in improving the accuracy of the coarse disparity maps generated by different algorithms, while also running in real-time on embedded GPUs.
Automatically generating high-quality real world 3D scenes is of enormous interest for applications such as virtual reality and robotics simulation. Towards this goal, we introduce NeuralField-LDM, a generative model capable of synthesizing complex 3D environments. We leverage Latent Diffusion Models that have been successfully utilized for efficient high-quality 2D content creation. We first train a scene auto-encoder to express a set of image and pose pairs as a neural field, represented as density and feature voxel grids that can be projected to produce novel views of the scene. To further compress this representation, we train a latent-autoencoder that maps the voxel grids to a set of latent representations. A hierarchical diffusion model is then fit to the latents to complete the scene generation pipeline. We achieve a substantial improvement over existing state-of-the-art scene generation models. Additionally, we show how NeuralField-LDM can be used for a variety of 3D content creation applications, including conditional scene generation, scene inpainting and scene style manipulation.
We introduce an effective model to overcome the problem of mode collapse when training Generative Adversarial Networks (GAN). Firstly, we propose a new generator objective that finds it better to tackle mode collapse. And, we apply an independent Autoencoders (AE) to constrain the generator and consider its reconstructed samples as "real" samples to slow down the convergence of discriminator that enables to reduce the gradient vanishing problem and stabilize the model. Secondly, from mappings between latent and data spaces provided by AE, we further regularize AE by the relative distance between the latent and data samples to explicitly prevent the generator falling into mode collapse setting. This idea comes when we find a new way to visualize the mode collapse on MNIST dataset. To the best of our knowledge, our method is the first to propose and apply successfully the relative distance of latent and data samples for stabilizing GAN. Thirdly, our proposed model, namely Generative Adversarial Autoencoder Networks (GAAN), is stable and has suffered from neither gradient vanishing nor mode collapse issues, as empirically demonstrated on synthetic, MNIST, MNIST-1K, CelebA and CIFAR-10 datasets. Experimental results show that our method can approximate well multi-modal distribution and achieve better results than state-of-the-art methods on these benchmark datasets. Our model implementation is published here: //github.com/tntrung/gaan