亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Facing climate change the already limited availability of drinking water will decrease in the future rendering drinking water an increasingly scarce resource. Considerable amounts of it are lost through leakages in water transportation and distribution networks. Leakage detection and localization are challenging problems due to the complex interactions and changing demands in water distribution networks. Especially small leakages are hard to pinpoint yet their localization is vital to avoid water loss over long periods of time. While there exist different approaches to solving the tasks of leakage detection and localization, they are relying on various information about the system, e.g. real-time demand measurements and the precise network topology, which is an unrealistic assumption in many real-world scenarios. In contrast, this work attempts leakage localization using pressure measurements only. For this purpose, first, leakages in the water distribution network are modeled employing Bayesian networks, and the system dynamics are analyzed. We then show how the problem is connected to and can be considered through the lens of concept drift. In particular, we argue that model-based explanations of concept drift are a promising tool for localizing leakages given limited information about the network. The methodology is experimentally evaluated using realistic benchmark scenarios.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡(luo)會(hui)議(yi)。 Publisher:IFIP。 SIT:

The growing presence of Artificial Intelligence (AI) in various sectors necessitates systems that accurately reflect societal diversity. This study seeks to envision the operationalization of the ethical imperatives of diversity and inclusion (D&I) within AI ecosystems, addressing the current disconnect between ethical guidelines and their practical implementation. A significant challenge in AI development is the effective operationalization of D&I principles, which is critical to prevent the reinforcement of existing biases and ensure equity across AI applications. This paper proposes a vision of a framework for developing a tool utilizing persona-based simulation by Generative AI (GenAI). The approach aims to facilitate the representation of the needs of diverse users in the requirements analysis process for AI software. The proposed framework is expected to lead to a comprehensive persona repository with diverse attributes that inform the development process with detailed user narratives. This research contributes to the development of an inclusive AI paradigm that ensures future technological advances are designed with a commitment to the diverse fabric of humanity.

One of the motivations for explainable AI is to allow humans to make better and more informed decisions regarding the use and deployment of AI models. But careful evaluations are needed to assess whether this expectation has been fulfilled. Current evaluations mainly focus on algorithmic properties of explanations, and those that involve human subjects often employ subjective questions to test human's perception of explanation usefulness, without being grounded in objective metrics and measurements. In this work, we evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development. We conduct a mixed-methods user study involving image data to evaluate saliency maps generated by SmoothGrad, GradCAM, and an oracle explanation on two tasks: model selection and counterfactual simulation. To our surprise, we did not find evidence of significant improvement on these tasks when users were provided with any of the saliency maps, even the synthetic oracle explanation designed to be simple to understand and highly indicative of the answer. Nonetheless, explanations did help users more accurately describe the models. These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.

AI-generated media has become a threat to our digital society as we know it. These forgeries can be created automatically and on a large scale based on publicly available technology. Recognizing this challenge, academics and practitioners have proposed a multitude of automatic detection strategies to detect such artificial media. However, in contrast to these technical advances, the human perception of generated media has not been thoroughly studied yet. In this paper, we aim at closing this research gap. We perform the first comprehensive survey into people's ability to detect generated media, spanning three countries (USA, Germany, and China) with 3,002 participants across audio, image, and text media. Our results indicate that state-of-the-art forgeries are almost indistinguishable from "real" media, with the majority of participants simply guessing when asked to rate them as human- or machine-generated. In addition, AI-generated media receive is voted more human like across all media types and all countries. To further understand which factors influence people's ability to detect generated media, we include personal variables, chosen based on a literature review in the domains of deepfake and fake news research. In a regression analysis, we found that generalized trust, cognitive reflection, and self-reported familiarity with deepfakes significantly influence participant's decision across all media categories.

When interest lies in the progression of a disease rather than on a single outcome, non-homogeneous multi-state Markov models constitute a natural and powerful modelling approach. Constant monitoring of a phenomenon of interest is often unfeasible, hence leading to an intermittent observation scheme. This setting is challenging and existing models and their implementations do not yet allow for flexible enough specifications that can fully exploit the information contained in the data. To widen significantly the scope of multi-state Markov models, we propose a closed-form expression for the local curvature information of a key quantity, the transition probability matrix. Such development allows one to model any type of multi-state Markov process, where the transition intensities are flexibly specified as functions of additive predictors. Parameter estimation is carried out through a carefully structured, stable penalised likelihood approach. The methodology is exemplified via two case studies that aim at modelling the onset of cardiac allograft vasculopathy, and cognitive decline. To support applicability and reproducibility, all developed tools are implemented in the R package flexmsm.

We propose a method for sound source localization (SSL) for a source inside a structure using Ac-CycleGAN under unpaired data conditions. The proposed method utilizes a large amount of simulated data and a small amount of actual experimental data to locate a sound source inside a structure in a real environment. An Ac-CycleGAN generator contributes to the transformation of simulated data into real data, or vice versa, using unpaired data from both domains. The discriminator of an Ac-CycleGAN model is designed to differentiate between the transformed data generated by the generator and real data, while also predicting the location of the sound source. Vectors representing the frequency spectrum of the accelerometers (FSAs) measured at three points outside the structure are used as input data and the source areas inside the structure are used as labels. The input data vectors are concatenated vertically to form an image. Labels are defined by dividing the interior of the structure into eight areas with one-hot encoding for each area. Thus, the SSL problem is redefined as an image-classification problem to stochastically estimate the location of the sound source. We show that it is possible to estimate the sound source location using the Ac-CycleGAN discriminator for unpaired data across domains. Furthermore, we analyze the discriminative factors for distinguishing the data. The proposed model exhibited an accuracy exceeding 90\% when trained on 80\% of actual data (12.5\% of simulated data). Despite potential imperfections in the domain transformation process carried out by the Ac-CycleGAN generator, the discriminator can effectively distinguish between transferred and real data by selectively utilizing only those features that generate a relatively small transformation error.

With the constant spread of misinformation on social media networks, a need has arisen to continuously assess the veracity of digital content. This need has inspired numerous research efforts on the development of misinformation detection (MD) models. However, many models do not use all information available to them and existing research contains a lack of relevant datasets to train the models, specifically within the South African social media environment. The aim of this paper is to investigate the transferability of knowledge of a MD model between different contextual environments. This research contributes a multimodal MD model capable of functioning in the South African social media environment, as well as introduces a South African misinformation dataset. The model makes use of multiple sources of information for misinformation detection, namely: textual and visual elements. It uses bidirectional encoder representations from transformers (BERT) as the textual encoder and a residual network (ResNet) as the visual encoder. The model is trained and evaluated on the Fakeddit dataset and a South African misinformation dataset. Results show that using South African samples in the training of the model increases model performance, in a South African contextual environment, and that a multimodal model retains significantly more knowledge than both the textual and visual unimodal models. Our study suggests that the performance of a misinformation detection model is influenced by the cultural nuances of its operating environment and multimodal models assist in the transferability of knowledge between different contextual environments. Therefore, local data should be incorporated into the training process of a misinformation detection model in order to optimize model performance.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

Automatically creating the description of an image using any natural languages sentence like English is a very challenging task. It requires expertise of both image processing as well as natural language processing. This paper discuss about different available models for image captioning task. We have also discussed about how the advancement in the task of object recognition and machine translation has greatly improved the performance of image captioning model in recent years. In addition to that we have discussed how this model can be implemented. In the end, we have also evaluated the performance of model using standard evaluation matrices.

北京阿比特科技有限公司