亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The fair-ranking problem, which asks to rank a given set of items to maximize utility subject to group fairness constraints, has received attention in the fairness, information retrieval, and machine learning literature. Recent works, however, observe that errors in socially-salient (including protected) attributes of items can significantly undermine fairness guarantees of existing fair-ranking algorithms and raise the problem of mitigating the effect of such errors. We study the fair-ranking problem under a model where socially-salient attributes of items are randomly and independently perturbed. We present a fair-ranking framework that incorporates group fairness requirements along with probabilistic information about perturbations in socially-salient attributes. We provide provable guarantees on the fairness and utility attainable by our framework and show that it is information-theoretically impossible to significantly beat these guarantees. Our framework works for multiple non-disjoint attributes and a general class of fairness constraints that includes proportional and equal representation. Empirically, we observe that, compared to baselines, our algorithm outputs rankings with higher fairness, and has a similar or better fairness-utility trade-off compared to baselines.

相關內容

Predictive models -- as with machine learning -- can underpin causal inference, to estimate the effects of an intervention at the population or individual level. This opens the door to a plethora of models, useful to match the increasing complexity of health data, but also the Pandora box of model selection: which of these models yield the most valid causal estimates? Classic machine-learning cross-validation procedures are not directly applicable. Indeed, an appropriate selection procedure for causal inference should equally weight both outcome errors for each individual, treated or not treated, whereas one outcome may be seldom observed for a sub-population. We study how more elaborate risks benefit causal model selection. We show theoretically that simple risks are brittle to weak overlap between treated and non-treated individuals as well as to heterogeneous errors between populations. Rather a more elaborate metric, the R-risk appears as a proxy of the oracle error on causal estimates, observable at the cost of an overlap re-weighting. As the R-risk is defined not only from model predictions but also by using the conditional mean outcome and the treatment probability, using it for model selection requires adapting cross validation. Extensive experiments show that the resulting procedure gives the best causal model selection.

Hit song prediction, one of the emerging fields in music information retrieval (MIR), remains a considerable challenge. Being able to understand what makes a given song a hit is clearly beneficial to the whole music industry. Previous approaches to hit song prediction have focused on using audio features of a record. This study aims to improve the prediction result of the top 10 hits among Billboard Hot 100 songs using more alternative metadata, including song audio features provided by Spotify, song lyrics, and novel metadata-based features (title topic, popularity continuity and genre class). Five machine learning approaches are applied, including: k-nearest neighbours, Naive Bayes, Random Forest, Logistic Regression and Multilayer Perceptron. Our results show that Random Forest (RF) and Logistic Regression (LR) with all features (including novel features, song audio features and lyrics features) outperforms other models, achieving 89.1% and 87.2% accuracy, and 0.91 and 0.93 AUC, respectively. Our findings also demonstrate the utility of our novel music metadata features, which contributed most to the models' discriminative performance.

The fairness of machine learning-based decisions has become an increasingly important focus in the design of supervised machine learning methods. Most fairness approaches optimize a specified trade-off between performance measure(s) (e.g., accuracy, log loss, or AUC) and fairness metric(s) (e.g., demographic parity, equalized odds). This begs the question: are the right performance-fairness trade-offs being specified? We instead re-cast fair machine learning as an imitation learning task by introducing superhuman fairness, which seeks to simultaneously outperform human decisions on multiple predictive performance and fairness measures. We demonstrate the benefits of this approach given suboptimal decisions.

Evaluating fairness can be challenging in practice because the sensitive attributes of data are often inaccessible due to privacy constraints. The go-to approach that the industry frequently adopts is using off-the-shelf proxy models to predict the missing sensitive attributes, e.g. Meta [Alao et al., 2021] and Twitter [Belli et al., 2022]. Despite its popularity, there are three important questions unanswered: (1) Is directly using proxies efficacious in measuring fairness? (2) If not, is it possible to accurately evaluate fairness using proxies only? (3) Given the ethical controversy over inferring user private information, is it possible to only use weak (i.e. inaccurate) proxies in order to protect privacy? Our theoretical analyses show that directly using proxy models can give a false sense of (un)fairness. Second, we develop an algorithm that is able to measure fairness (provably) accurately with only three properly identified proxies. Third, we show that our algorithm allows the use of only weak proxies (e.g. with only 68.85%accuracy on COMPAS), adding an extra layer of protection on user privacy. Experiments validate our theoretical analyses and show our algorithm can effectively measure and mitigate bias. Our results imply a set of practical guidelines for practitioners on how to use proxies properly. Code is available at github.com/UCSC-REAL/fair-eval.

As machine learning (ML) algorithms are increasingly used in high-stakes applications, concerns have arisen that they may be biased against certain social groups. Although many approaches have been proposed to make ML models fair, they typically rely on the assumption that data distributions in training and deployment are identical. Unfortunately, this is commonly violated in practice and a model that is fair during training may lead to an unexpected outcome during its deployment. Although the problem of designing robust ML models under dataset shifts has been widely studied, most existing works focus only on the transfer of accuracy. In this paper, we study the transfer of both fairness and accuracy under domain generalization where the data at test time may be sampled from never-before-seen domains. We first develop theoretical bounds on the unfairness and expected loss at deployment, and then derive sufficient conditions under which fairness and accuracy can be perfectly transferred via invariant representation learning. Guided by this, we design a learning algorithm such that fair ML models learned with training data still have high fairness and accuracy when deployment environments change. Experiments on real-world data validate the proposed algorithm. Model implementation is available at //github.com/pth1993/FATDM.

We present a subset selection algorithm designed to work with arbitrary model families in a practical batch setting. In such a setting, an algorithm can sample examples one at a time but, in order to limit overhead costs, is only able to update its state (i.e. further train model weights) once a large enough batch of examples is selected. Our algorithm, IWeS, selects examples by importance sampling where the sampling probability assigned to each example is based on the entropy of models trained on previously selected batches. IWeS admits significant performance improvement compared to other subset selection algorithms for seven publicly available datasets. Additionally, it is competitive in an active learning setting, where the label information is not available at selection time. We also provide an initial theoretical analysis to support our importance weighting approach, proving generalization and sampling rate bounds.

Federated Learning is a distributed machine learning environment, which ensures that clients complete collaborative training without sharing private data, only by exchanging parameters. However, the data does not satisfy the same distribution and the computing resources of clients are different, which brings challenges to the related research. To better solve the above heterogeneous problems, we designed a novel federated learning method. The local model consists of the pre-trained model as the backbone and fully connected layers as the head. The backbone can extract features for the head, and the embedding vector of classes is shared between clients to optimize the head so that the local model can perform better. By sharing the embedding vector of classes, instead of parameters based on gradient space, clients can better adapt to private data, and it is more efficient in the communication between the server and clients. To better protect privacy, we proposed a privacy-preserving hybrid method to add noise to the embedding vector of classes, which has less impact on the local model performance under the premise of satisfying differential privacy. We conduct a comprehensive evaluation with other federated learning methods on the self-built vehicle dataset under non-independent identically distributed(Non-IID)

Novel class discovery (NCD) aims to infer novel categories in an unlabeled dataset leveraging prior knowledge of a labeled set comprising disjoint but related classes. Existing research focuses primarily on utilizing the labeled set at the methodological level, with less emphasis on the analysis of the labeled set itself. Thus, in this paper, we rethink novel class discovery from the labeled set and focus on two core questions: (i) Given a specific unlabeled set, what kind of labeled set can best support novel class discovery? (ii) A fundamental premise of NCD is that the labeled set must be related to the unlabeled set, but how can we measure this relation? For (i), we propose and substantiate the hypothesis that NCD could benefit more from a labeled set with a large degree of semantic similarity to the unlabeled set. Specifically, we establish an extensive and large-scale benchmark with varying degrees of semantic similarity between labeled/unlabeled datasets on ImageNet by leveraging its hierarchical class structure. As a sharp contrast, the existing NCD benchmarks are developed based on labeled sets with different number of categories and images, and completely ignore the semantic relation. For (ii), we introduce a mathematical definition for quantifying the semantic similarity between labeled and unlabeled sets. In addition, we use this metric to confirm the validity of our proposed benchmark and demonstrate that it highly correlates with NCD performance. Furthermore, without quantitative analysis, previous works commonly believe that label information is always beneficial. However, counterintuitively, our experimental results show that using labels may lead to sub-optimal outcomes in low-similarity settings.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

北京阿比特科技有限公司