AI-based systems have been used widely across various industries for different decisions ranging from operational decisions to tactical and strategic ones in low- and high-stakes contexts. Gradually the weaknesses and issues of these systems have been publicly reported including, ethical issues, biased decisions, unsafe outcomes, and unfair decisions, to name a few. Research has tended to optimize AI less has focused on its risk and unexpected negative consequences. Acknowledging this serious potential risks and scarcity of re-search I focus on unsafe outcomes of AI. Specifically, I explore this issue from a Human-AI interaction lens during AI deployment. It will be discussed how the interaction of individuals and AI during its deployment brings new concerns, which need a solid and holistic mitigation plan. It will be dis-cussed that only AI algorithms' safety is not enough to make its operation safe. The AI-based systems' end-users and their decision-making archetypes during collaboration with these systems should be considered during the AI risk management. Using some real-world scenarios, it will be highlighted that decision-making archetypes of users should be considered a design principle in AI-based systems.
Interactive machine learning (IML) is a field of research that explores how to leverage both human and computational abilities in decision making systems. IML represents a collaboration between multiple complementary human and machine intelligent systems working as a team, each with their own unique abilities and limitations. This teamwork might mean that both systems take actions at the same time, or in sequence. Two major open research questions in the field of IML are: "How should we design systems that can learn to make better decisions over time with human interaction?" and "How should we evaluate the design and deployment of such systems?" A lack of appropriate consideration for the humans involved can lead to problematic system behaviour, and issues of fairness, accountability, and transparency. Thus, our goal with this work is to present a human-centred guide to designing and evaluating IML systems while mitigating risks. This guide is intended to be used by machine learning practitioners who are responsible for the health, safety, and well-being of interacting humans. An obligation of responsibility for public interaction means acting with integrity, honesty, fairness, and abiding by applicable legal statutes. With these values and principles in mind, we as a machine learning research community can better achieve goals of augmenting human skills and abilities. This practical guide therefore aims to support many of the responsible decisions necessary throughout the iterative design, development, and dissemination of IML systems.
The human footprint is having a unique set of ridges unmatched by any other human being, and therefore it can be used in different identity documents for example birth certificate, Indian biometric identification system AADHAR card, driving license, PAN card, and passport. There are many instances of the crime scene where an accused must walk around and left the footwear impressions as well as barefoot prints and therefore, it is very crucial to recovering the footprints from identifying the criminals. Footprint-based biometric is a considerably newer technique for personal identification. Fingerprints, retina, iris and face recognition are the methods most useful for attendance record of the person. This time the world is facing the problem of global terrorism. It is challenging to identify the terrorist because they are living as regular as the citizens do. Their soft target includes the industries of special interests such as defence, silicon and nanotechnology chip manufacturing units, pharmacy sectors. They pretend themselves as religious persons, so temples and other holy places, even in markets is in their targets. These are the places where one can obtain their footprints quickly. The gait itself is sufficient to predict the behaviour of the suspects. The present research is driven to identify the usefulness of footprint and gait as an alternative to personal identification.
In recent years, the field of explainable AI (XAI) has produced a vast collection of algorithms, providing a useful toolbox for researchers and practitioners to build XAI applications. With the rich application opportunities, explainability is believed to have moved beyond a demand by data scientists or researchers to comprehend the models they develop, to an essential requirement for people to trust and adopt AI deployed in numerous domains. However, explainability is an inherently human-centric property and the field is starting to embrace human-centered approaches. Human-computer interaction (HCI) research and user experience (UX) design in this area are becoming increasingly important. In this chapter, we begin with a high-level overview of the technical landscape of XAI algorithms, then selectively survey our own and other recent HCI works that take human-centered approaches to design, evaluate, and provide conceptual and methodological tools for XAI. We ask the question "what are human-centered approaches doing for XAI" and highlight three roles that they play in shaping XAI technologies by helping navigate, assess and expand the XAI toolbox: to drive technical choices by users' explainability needs, to uncover pitfalls of existing XAI methods and inform new methods, and to provide conceptual frameworks for human-compatible XAI.
Recent developments in Artificial Intelligence (AI) have fueled the emergence of human-AI collaboration, a setting where AI is a coequal partner. Especially in clinical decision-making, it has the potential to improve treatment quality by assisting overworked medical professionals. Even though research has started to investigate the utilization of AI for clinical decision-making, its potential benefits do not imply its adoption by medical professionals. While several studies have started to analyze adoption criteria from a technical perspective, research providing a human-centered perspective with a focus on AI's potential for becoming a coequal team member in the decision-making process remains limited. Therefore, in this work, we identify factors for the adoption of human-AI collaboration by conducting a series of semi-structured interviews with experts in the healthcare domain. We identify six relevant adoption factors and highlight existing tensions between them and effective human-AI collaboration.
Artificial intelligence (AI) is gaining momentum, and its importance for the future of work in many areas, such as medicine and banking, is continuously rising. However, insights on the effective collaboration of humans and AI are still rare. Typically, AI supports humans in decision-making by addressing human limitations. However, it may also evoke human bias, especially in the form of automation bias as an over-reliance on AI advice. We aim to shed light on the potential to influence automation bias by explainable AI (XAI). In this pre-test, we derive a research model and describe our study design. Subsequentially, we conduct an online experiment with regard to hotel review classifications and discuss first results. We expect our research to contribute to the design and development of safe hybrid intelligence systems.
AI's rapid growth has been felt acutely by scholarly venues, leading to growing pains within the peer review process. These challenges largely center on the inability of specific subareas to identify and evaluate work that is appropriate according to criteria relevant to each subcommunity as determined by stakeholders of that subarea. We set forth a proposal that re-focuses efforts within these subcommunities through a decentralization of the reviewing and publication process. Through this re-centering effort, we hope to encourage each subarea to confront the issues specific to their process of academic publication and incentivization. This model has historically been successful for several subcommunities in AI, and we highlight those instances as examples for how the broader field can continue to evolve despite its continually growing size.
Human-AI co-creativity involves humans and AI collaborating on a shared creative product as partners. In many existing co-creative systems, users communicate with the AI using buttons or sliders. However, typically, the AI in co-creative systems cannot communicate back to humans, limiting their potential to be perceived as partners. This paper starts with an overview of a comparative study with 38 participants to explore the impact of AI-to-human communication on user perception and engagement in co-creative systems and the results show improved collaborative experience and user engagement with the system incorporating AI-to-human communication. The results also demonstrate that users perceive co-creative AI as more reliable, personal and intelligent when it can communicate with the users. The results indicate a need to identify potential ethical issues from an engaging communicating co-creative AI. Later in the paper, we present some potential ethical issues in human-AI co-creation and propose to use participatory design fiction as the research methodology to investigate the ethical issues associated with a co-creative AI that communicates with users.
Designers reportedly struggle with design optimization tasks where they are asked to find a combination of design parameters that maximizes a given set of objectives. In HCI, design optimization problems are often exceedingly complex, involving multiple objectives and expensive empirical evaluations. Model-based computational design algorithms assist designers by generating design examples during design, however they assume a model of the interaction domain. Black box methods for assistance, on the other hand, can work with any design problem. However, virtually all empirical studies of this human-in-the-loop approach have been carried out by either researchers or end-users. The question stands out if such methods can help designers in realistic tasks. In this paper, we study Bayesian optimization as an algorithmic method to guide the design optimization process. It operates by proposing to a designer which design candidate to try next, given previous observations. We report observations from a comparative study with 40 novice designers who were tasked to optimize a complex 3D touch interaction technique. The optimizer helped designers explore larger proportions of the design space and arrive at a better solution, however they reported lower agency and expressiveness. Designers guided by an optimizer reported lower mental effort but also felt less creative and less in charge of the progress. We conclude that human-in-the-loop optimization can support novice designers in cases where agency is not critical.
There has been growing interest in the development and deployment of autonomous vehicles on roads over the last few years, encouraged by the empirical successes of powerful artificial intelligence techniques (AI), especially in the applications of deep learning and reinforcement learning. However, as demonstrated by recent traffic accidents, autonomous driving technology is not mature for safe deployment. As AI is the main technology behind the intelligent navigation systems of self-driving vehicles, both the stakeholders and transportation jurisdictions require their AI-driven software architecture to be safe, explainable, and regulatory compliant. We propose a framework that integrates autonomous control, explainable AI, and regulatory compliance to address this issue and validate the framework with a critical analysis in a case study. Moreover, we describe relevant XAI approaches that can help achieve the goals of the framework.