亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the computational complexity of converting one representation of real numbers into another representation. Typical examples of representations are Cauchy sequences, base-10 expansions, Dedekind cuts and continued fractions.

相關內容

The unified streaming and non-streaming speech recognition model has achieved great success due to its comprehensive capabilities. In this paper, we propose to improve the accuracy of the unified model by bridging the inherent representation gap between the streaming and non-streaming modes with a contrastive objective. Specifically, the top-layer hidden representation at the same frame of the streaming and non-streaming modes are regarded as a positive pair, encouraging the representation of the streaming mode close to its non-streaming counterpart. The multiple negative samples are randomly selected from the rest frames of the same sample under the non-streaming mode. Experimental results demonstrate that the proposed method achieves consistent improvements toward the unified model in both streaming and non-streaming modes. Our method achieves CER of 4.66% in the streaming mode and CER of 4.31% in the non-streaming mode, which sets a new state-of-the-art on the AISHELL-1 benchmark.

Dedicated treatment of symmetries in satisfiability problems (SAT) is indispensable for solving various classes of instances arising in practice. However, the exploitation of symmetries usually takes a black box approach. Typically, off-the-shelf external, general-purpose symmetry detection tools are invoked to compute symmetry groups of a formula. The groups thus generated are a set of permutations passed to a separate tool to perform further analyzes to understand the structure of the groups. The result of this second computation is in turn used for tasks such as static symmetry breaking or dynamic pruning of the search space. Within this pipeline of tools, the detection and analysis of symmetries typically incurs the majority of the time overhead for symmetry exploitation. In this paper we advocate for a more holistic view of what we call the SAT-symmetry interface. We formulate a computational setting, centered around a new concept of joint graph/group pairs, to analyze and improve the detection and analysis of symmetries. Using our methods, no information is lost performing computational tasks lying on the SAT-symmetry interface. Having access to the entire input allows for simpler, yet efficient algorithms. Specifically, we devise algorithms and heuristics for computing finest direct disjoint decompositions, finding equivalent orbits, and finding natural symmetric group actions. Our algorithms run in what we call instance-quasi-linear time, i.e., almost linear time in terms of the input size of the original formula and the description length of the symmetry group returned by symmetry detection tools. Our algorithms improve over both heuristics used in state-of-the-art symmetry exploitation tools, as well as theoretical general-purpose algorithms.

Designing capacity-achieving coding schemes for the band-limited additive colored Gaussian noise (ACGN) channel has been and is still a challenge. In this paper, the capacity of the band-limited ACGN channel is studied from a fundamental algorithmic point of view by addressing the question of whether or not the capacity can be algorithmically computed. To this aim, the concept of Turing machines is used, which provides fundamental performance limits of digital computers. t is shown that there are band-limited ACGN channels having computable continuous spectral densities whose capacity are non-computable numbers. Moreover, it is demonstrated that for those channels, it is impossible to find computable sequences of asymptotically sharp upper bounds for their capacities.

Inspired by a recent study by Christensen and Popovski on secure $2$-user product computation for finite-fields of prime-order over a quantum multiple access channel (QMAC), the generalization to $K$ users and arbitrary finite fields is explored. Combining ideas of batch-processing, quantum $2$-sum protocol, a secure computation scheme of Feige, Killian and Naor (FKN), a field-group isomorphism and additive secret sharing, asymptotically optimal (capacity-achieving for large alphabet) schemes are proposed for secure $K$-user (any $K$) product computation over any finite field. The capacity of modulo-$d$ ($d\geq 2$) secure $K$-sum computation over the QMAC is found to be $2/K$ computations/qudit as a byproduct of the analysis.

Graph Neural Networks (GNNs) typically operate by message-passing, where the state of a node is updated based on the information received from its neighbours. Most message-passing models act as graph convolutions, where features are mixed by a shared, linear transformation before being propagated over the edges. On node-classification tasks, graph convolutions have been shown to suffer from two limitations: poor performance on heterophilic graphs, and over-smoothing. It is common belief that both phenomena occur because such models behave as low-pass filters, meaning that the Dirichlet energy of the features decreases along the layers incurring a smoothing effect that ultimately makes features no longer distinguishable. In this work, we rigorously prove that simple graph-convolutional models can actually enhance high frequencies and even lead to an asymptotic behaviour we refer to as over-sharpening, opposite to over-smoothing. We do so by showing that linear graph convolutions with symmetric weights minimize a multi-particle energy that generalizes the Dirichlet energy; in this setting, the weight matrices induce edge-wise attraction (repulsion) through their positive (negative) eigenvalues, thereby controlling whether the features are being smoothed or sharpened. We also extend the analysis to non-linear GNNs, and demonstrate that some existing time-continuous GNNs are instead always dominated by the low frequencies. Finally, we validate our theoretical findings through ablations and real-world experiments.

This article presents a theoretical evaluation of the computational universality of decoder-only transformer models. We extend the theoretical literature on transformer models and show that decoder-only transformer architectures (even with only a single layer and single attention head) are Turing complete under reasonable assumptions. From the theoretical analysis, we show sparsity/compressibility of the word embedding to be a necessary condition for Turing completeness to hold.

In this paper, we propose a new method for the derivation of a priority vector from an incomplete pairwise comparisons (PC) matrix. We assume that each entry of a PC matrix provided by an expert is also evaluated in terms of the expert's confidence in a particular judgment. Then, from corresponding graph representations of a given PC matrix, all spanning trees are found. For each spanning tree, a unique priority vector is obtained with the weight corresponding to the confidence levels of entries that constitute this tree. At the end, the final priority vector is obtained through an aggregation of priority vectors achieved from all spanning trees. Confidence levels are modeled by real (crisp) numbers and triangular fuzzy numbers. Numerical examples and comparisons with other methods are also provided. Last, but not least, we introduce a new formula for an upper bound of the number of spanning trees, so that a decision maker gains knowledge (in advance) on how computationally demanding the proposed method is for a given PC matrix.

We propose a two-point flux approximation finite-volume scheme for the approximation of two cross-diffusion systems coupled by a free interface to account for vapor deposition. The moving interface is addressed with a cut-cell approach, where the mesh is locally deformed around the interface. The scheme preserves the structure of the continuous system, namely: mass conservation, nonnegativity, volume-filling constraints and decay of the free energy. Numerical results illustrate the properties of the scheme.

The isomorphism problem for graphs (GI) and the isomorphism problem for groups (GrISO) have been studied extensively by researchers. The current best algorithms for both these problems run in quasipolynomial time. In this paper, we study the isomorphism problem of graphs that are defined in terms of groups, namely power graphs, directed power graphs, and enhanced power graphs. It is not enough to check the isomorphism of the underlying groups to solve the isomorphism problem of such graphs as the power graphs (or the directed power graphs or the enhanced power graphs) of two nonisomorphic groups can be isomorphic. Nevertheless, it is interesting to ask if the underlying group structure can be exploited to design better isomorphism algorithms for these graphs. We design polynomial time algorithms for the isomorphism problems for the power graphs, the directed power graphs and the enhanced power graphs arising from finite nilpotent groups. In contrast, no polynomial time algorithm is known for the group isomorphism problem, even for nilpotent groups of class 2. We note that our algorithm does not require the underlying groups of the input graphs to be given. The isomorphism problems of power graphs and enhanced power graphs are solved by first computing the directed power graphs from the input graphs. The problem of efficiently computing the directed power graph from the power graph or the enhanced power graph is due to Cameron [IJGT'22]. Therefore, we give a solution to Cameron's question.

In this paper, we evaluate the performance of novel numerical methods for solving one-dimensional nonlinear fractional dispersive and dissipative evolution equations. The methods are based on affine combinations of time-splitting integrators and pseudo-spectral discretizations using Hermite and Fourier expansions. We show the effectiveness of the proposed methods by numerically computing the dynamics of soliton solutions of the the standard and fractional variants of the nonlinear Schr\"odinger equation (NLSE) and the complex Ginzburg-Landau equation (CGLE), and by comparing the results with those obtained by standard splitting integrators. An exhaustive numerical investigation shows that the new technique is competitive with traditional composition-splitting schemes for the case of Hamiltonian problems both in terms accuracy and computational cost. Moreover, it is applicable straightforwardly to irreversible models, outperforming high-order symplectic integrators which could become unstable due to their need of negative time steps. Finally, we discuss potential improvements of the numerical methods aimed to increase their efficiency, and possible applications to the investigation of dissipative solitons that arise in nonlinear optical systems of contemporary interest. Overall, our method offers a promising alternative for solving a wide range of evolutionary partial differential equations.

北京阿比特科技有限公司