In this paper, we propose a new method for the derivation of a priority vector from an incomplete pairwise comparisons (PC) matrix. We assume that each entry of a PC matrix provided by an expert is also evaluated in terms of the expert's confidence in a particular judgment. Then, from corresponding graph representations of a given PC matrix, all spanning trees are found. For each spanning tree, a unique priority vector is obtained with the weight corresponding to the confidence levels of entries that constitute this tree. At the end, the final priority vector is obtained through an aggregation of priority vectors achieved from all spanning trees. Confidence levels are modeled by real (crisp) numbers and triangular fuzzy numbers. Numerical examples and comparisons with other methods are also provided. Last, but not least, we introduce a new formula for an upper bound of the number of spanning trees, so that a decision maker gains knowledge (in advance) on how computationally demanding the proposed method is for a given PC matrix.
In the Metric Dimension problem, one asks for a minimum-size set R of vertices such that for any pair of vertices of the graph, there is a vertex from R whose two distances to the vertices of the pair are distinct. This problem has mainly been studied on undirected graphs and has gained a lot of attention in the recent years. We focus on directed graphs, and show how to solve the problem in linear-time on digraphs whose underlying undirected graph (ignoring multiple edges) is a tree. This (nontrivially) extends a previous algorithm for oriented trees. We then extend the method to unicyclic digraphs (understood as the digraphs whose underlying undirected multigraph has a unique cycle). We also give a fixed-parameter-tractable algorithm for digraphs when parameterized by the directed modular-width, extending a known result for undirected graphs. Finally, we show that Metric Dimension is NP-hard even on planar triangle-free acyclic digraphs of maximum degree 6.
A classification of Hadamard matrices of order $2p+2$ with an automorphism of order $p$ is given for $p=29$ and $31$. The ternary self-dual codes spanned by the newly found Hadamard matrices of order $60$ with an automorphism of order $29$ are computed, as well as the binary doubly even self-dual codes of length $120$ with generator matrices defined by related Hadamard designs. Several new ternary near-extremal self-dual codes, as well as binary near-extremal doubly even self-dual codes with previously unknown weight enumerators are found.
In this paper we study the relation of two fundamental problems in scheduling and fair allocation: makespan minimization on unrelated parallel machines and max-min fair allocation, also known as the Santa Claus problem. For both of these problems the best approximation factor is a notorious open question; more precisely, whether there is a better-than-2 approximation for the former problem and whether there is a constant approximation for the latter. While the two problems are intuitively related and history has shown that techniques can often be transferred between them, no formal reductions are known. We first show that an affirmative answer to the open question for makespan minimization implies the same for the Santa Claus problem by reducing the latter problem to the former. We also prove that for problem instances with only two input values both questions are equivalent. We then move to a special case called ``restricted assignment'', which is well studied in both problems. Although our reductions do not maintain the characteristics of this special case, we give a reduction in a slight generalization, where the jobs or resources are assigned to multiple machines or players subject to a matroid constraint and in addition we have only two values. This draws a similar picture as before: equivalence for two values and the general case of Santa Claus can only be easier than makespan minimization. To complete the picture, we give an algorithm for our new matroid variant of the Santa Claus problem using a non-trivial extension of the local search method from restricted assignment. Thereby we unify, generalize, and improve several previous results. We believe that this matroid generalization may be of independent interest and provide several sample applications.
In this article, we propose two kinds of neural networks inspired by power method and inverse power method to solve linear eigenvalue problems. These neural networks share similar ideas with traditional methods, in which the differential operator is realized by automatic differentiation. The eigenfunction of the eigenvalue problem is learned by the neural network and the iterative algorithms are implemented by optimizing the specially defined loss function. The largest positive eigenvalue, smallest eigenvalue and interior eigenvalues with the given prior knowledge can be solved efficiently. We examine the applicability and accuracy of our methods in the numerical experiments in one dimension, two dimensions and higher dimensions. Numerical results show that accurate eigenvalue and eigenfunction approximations can be obtained by our methods.
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and students may lose the motivation to continue in the course. To help address this problem, we build predictive models that automatically determine the urgency of each forum post, so that these posts can be brought to instructors' attention. This paper goes beyond previous work by predicting not just a binary decision cut-off but a post's level of urgency on a 7-point scale. First, we train and cross-validate several models on an original data set of 3,503 posts from MOOCs at University of Pennsylvania. Second, to determine the generalizability of our models, we test their performance on a separate, previously published data set of 29,604 posts from MOOCs at Stanford University. While the previous work on post urgency used only one data set, we evaluated the prediction across different data sets and courses. The best-performing model was a support vector regressor trained on the Universal Sentence Encoder embeddings of the posts, achieving an RMSE of 1.1 on the training set and 1.4 on the test set. Understanding the urgency of forum posts enables instructors to focus their time more effectively and, as a result, better support student learning.
We consider the problem of exhaustively visiting all pairs of linear cellular automata which give rise to orthogonal Latin squares, i.e., linear Orthogonal Cellular Automata (OCA). The problem is equivalent to enumerating all pairs of coprime polynomials over a finite field having the same degree and a nonzero constant term. While previous research showed how to count all such pairs for a given degree and order of the finite field, no practical enumeration algorithms have been proposed so far. Here, we start closing this gap by addressing the case of polynomials defined over the field $\F_2$, which corresponds to binary CA. In particular, we exploit Benjamin and Bennett's bijection between coprime and non-coprime pairs of polynomials, which enables us to organize our study along three subproblems, namely the enumeration and count of: (1) sequences of constant terms, (2) sequences of degrees, and (3) sequences of intermediate terms. In the course of this investigation, we unveil interesting connections with algebraic language theory and combinatorics, obtaining an enumeration algorithm and an alternative derivation of the counting formula for this problem.
One of the most studied extensions of the famous Traveling Salesperson Problem (TSP) is the {\sc Multiple TSP}: a set of $m\geq 1$ salespersons collectively traverses a set of $n$ cities by $m$ non-trivial tours, to minimize the total length of their tours. This problem can also be considered to be a variant of {\sc Uncapacitated Vehicle Routing} where the objective function is the sum of all tour lengths. When all $m$ tours start from a single common \emph{depot} $v_0$, then the metric {\sc Multiple TSP} can be approximated equally well as the standard metric TSP, as shown by Frieze (1983). The {\sc Multiple TSP} becomes significantly harder to approximate when there is a \emph{set} $D$ of $d \geq 1$ depots that form the starting and end points of the $m$ tours. For this case only a $(2-1/d)$-approximation in polynomial time is known, as well as a $3/2$-approximation for \emph{constant} $d$ which requires a prohibitive run time of $n^{\Theta(d)}$ (Xu and Rodrigues, \emph{INFORMS J. Comput.}, 2015). A recent work of Traub, Vygen and Zenklusen (STOC 2020) gives another approximation algorithm for {\sc Multiple TSP} running in time $n^{\Theta(d)}$ and reducing the problem to approximating TSP. In this paper we overcome the $n^{\Theta(d)}$ time barrier: we give the first efficient approximation algorithm for {\sc Multiple TSP} with a \emph{variable} number $d$ of depots that yields a better-than-2 approximation. Our algorithm runs in time $(1/\varepsilon)^{\mathcal O(d\log d)}\cdot n^{\mathcal O(1)}$, and produces a $(3/2+\varepsilon)$-approximation with constant probability. For the graphic case, we obtain a deterministic $3/2$-approximation in time $2^d\cdot n^{\mathcal O(1)}$.ithm for metric {\sc Multiple TSP} with run time $n^{\Theta(d)}$, which reduces the problem to approximating metric TSP.
Off-policy evaluation (OPE) aims to estimate the benefit of following a counterfactual sequence of actions, given data collected from executed sequences. However, existing OPE estimators often exhibit high bias and high variance in problems involving large, combinatorial action spaces. We investigate how to mitigate this issue using factored action spaces i.e. expressing each action as a combination of independent sub-actions from smaller action spaces. This approach facilitates a finer-grained analysis of how actions differ in their effects. In this work, we propose a new family of "decomposed" importance sampling (IS) estimators based on factored action spaces. Given certain assumptions on the underlying problem structure, we prove that the decomposed IS estimators have less variance than their original non-decomposed versions, while preserving the property of zero bias. Through simulations, we empirically verify our theoretical results, probing the validity of various assumptions. Provided with a technique that can derive the action space factorisation for a given problem, our work shows that OPE can be improved "for free" by utilising this inherent problem structure.
We investigate explainability via short Boolean formulas in the data model based on unary relations. As an explanation of length k, we take a Boolean formula of length k that minimizes the error with respect to the target attribute to be explained. We first provide novel quantitative bounds for the expected error in this scenario. We then also demonstrate how the setting works in practice by studying three concrete data sets. In each case, we calculate explanation formulas of different lengths using an encoding in Answer Set Programming. The most accurate formulas we obtain achieve errors similar to other methods on the same data sets. However, due to overfitting, these formulas are not necessarily ideal explanations, so we use cross validation to identify a suitable length for explanations. By limiting to shorter formulas, we obtain explanations that avoid overfitting but are still reasonably accurate and also, importantly, human interpretable.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.