亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A classification of Hadamard matrices of order $2p+2$ with an automorphism of order $p$ is given for $p=29$ and $31$. The ternary self-dual codes spanned by the newly found Hadamard matrices of order $60$ with an automorphism of order $29$ are computed, as well as the binary doubly even self-dual codes of length $120$ with generator matrices defined by related Hadamard designs. Several new ternary near-extremal self-dual codes, as well as binary near-extremal doubly even self-dual codes with previously unknown weight enumerators are found.

相關內容

Let the costs $C(i,j)$ for an instance of the asymmetric traveling salesperson problem be independent uniform $[0,1]$ random variables. We consider the efficiency of branch and bound algorithms that use the assignment relaxation as a lower bound. We show that w.h.p. the number of steps taken in any such branch and bound algorithm is $e^{\Omega(n^a)}$ for some small absolute constant $a>0$.

We introduce two new classes of covering codes in graphs for every positive integer $r$. These new codes are called local $r$-identifying and local $r$-locating-dominating codes and they are derived from $r$-identifying and $r$-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small $n$ optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular grid, and the king grid. We prove that seven out of eight of our constructions have optimal densities.

In general, high order splitting methods suffer from an order reduction phenomena when applied to the time integration of partial differential equations with non-periodic boundary conditions. In the last decade, there were introduced several modifications to prevent the second order Strang Splitting method from such a phenomena. In this article, inspired by these recent corrector techniques, we introduce a splitting method of order three for a class of semilinear parabolic problems that avoids order reduction in the context of non-periodic boundary conditions. We give a proof for the third order convergence of the method in a simplified linear setting and confirm the result by numerical experiments. Moreover, we show numerically that the high order convergence persists for an order four variant of a splitting method, and also for a nonlinear source term.

Let $G$ be a graph on $n$ vertices with adjacency matrix $A$, and let $\mathbf{1}$ be the all-ones vector. We call $G$ controllable if the set of vectors $\mathbf{1}, A\mathbf{1}, \dots, A^{n-1}\mathbf{1}$ spans the whole space $\mathbb{R}^n$. We characterize the isomorphism problem of controllable graphs in terms of other combinatorial, geometric and logical problems. We also describe a polynomial time algorithm for graph isomorphism that works for almost all graphs.

Very recently, Qi and Cui extended the Perron-Frobenius theory to dual number matrices with primitive and irreducible nonnegative standard parts and proved that they have Perron eigenpair and Perron-Frobenius eigenpair. The Collatz method was also extended to find Perron eigenpair. Qi and Cui proposed two conjectures. One is the k-order power of a dual number matrix tends to zero if and only if the spectral radius of its standard part less than one, and another is the linear convergence of the Collatz method. In this paper, we confirm these conjectures and provide theoretical proof. The main contribution is to show that the Collatz method R-linearly converges with an explicit rate.

We consider the linear lambda-calculus extended with the sup type constructor, which provides an additive conjunction along with a non-deterministic destructor. The sup type constructor has been introduced in the context of quantum computing. In this paper, we study this type constructor within a simple linear logic categorical model, employing the category of semimodules over a commutative semiring. We demonstrate that the non-deterministic destructor finds a suitable model in a "weighted" codiagonal map. This approach offers a valid and insightful alternative to interpreting non-determinism, especially in instances where the conventional Powerset Monad interpretation does not align with the category's structure, as is the case with the category of semimodules. The validity of this alternative relies on the presence of biproducts within the category.

It is disproved the Tokareva's conjecture that any balanced boolean function of appropriate degree is a derivative of some bent function. This result is based on new upper bounds for the numbers of bent and plateaued functions.

Besov priors are nonparametric priors that can model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.

We introduce a general IFS Bayesian method for getting posterior probabilities from prior probabilities, and also a generalized Bayes' rule, which will contemplate a dynamical, as well as a non-dynamical setting. Given a loss function ${l}$, we detail the prior and posterior items, their consequences and exhibit several examples. Taking $\Theta$ as the set of parameters and $Y$ as the set of data (which usually provides {random samples}), a general IFS is a measurable map $\tau:\Theta\times Y \to Y$, which can be interpreted as a family of maps $\tau_\theta:Y\to Y,\,\theta\in\Theta$. The main inspiration for the results we will get here comes from a paper by Zellner (with no dynamics), where Bayes' rule is related to a principle of minimization of {information.} We will show that our IFS Bayesian method which produces posterior probabilities (which are associated to holonomic probabilities) is related to the optimal solution of a variational principle, somehow corresponding to the pressure in Thermodynamic Formalism, and also to the principle of minimization of information in Information Theory. Among other results, we present the prior dynamical elements and we derive the corresponding posterior elements via the Ruelle operator of Thermodynamic Formalism; getting in this way a form of dynamical Bayes' rule.

We prove that if $X,Y$ are positive, independent, non-Dirac random variables and if for $\alpha,\beta\ge 0$, $\alpha\neq \beta$, $$ \psi_{\alpha,\beta}(x,y)=\left(y\,\tfrac{1+\beta(x+y)}{1+\alpha x+\beta y},\;x\,\tfrac{1+\alpha(x+y)}{1+\alpha x+\beta y}\right), $$ then the random variables $U$ and $V$ defined by $(U,V)=\psi_{\alpha,\beta}(X,Y)$ are independent if and only if $X$ and $Y$ follow Kummer distributions with suitably related parameters. In other words, any invariant measure for a lattice recursion model governed by $\psi_{\alpha,\beta}$ in the scheme introduced by Croydon and Sasada in \cite{CS2020}, is necessarily a product measure with Kummer marginals. The result extends earlier characterizations of Kummer and gamma laws by independence of $$ U=\tfrac{Y}{1+X}\quad\mbox{and}\quad V= X\left(1+\tfrac{Y}{1+X}\right), $$ which corresponds to the case of $\psi_{1,0}$. We also show that this independence property of Kummer laws covers, as limiting cases, several independence models known in the literature: the Lukacs, the Kummer-Gamma, the Matsumoto-Yor and the discrete Korteweg de Vries ones.

北京阿比特科技有限公司