Let the costs $C(i,j)$ for an instance of the asymmetric traveling salesperson problem be independent uniform $[0,1]$ random variables. We consider the efficiency of branch and bound algorithms that use the assignment relaxation as a lower bound. We show that w.h.p. the number of steps taken in any such branch and bound algorithm is $e^{\Omega(n^a)}$ for some small absolute constant $a>0$.
In the Trivially Perfect Editing problem one is given an undirected graph $G = (V,E)$ and an integer $k$ and seeks to add or delete at most $k$ edges in $G$ to obtain a trivially perfect graph. In a recent work, Dumas, Perez and Todinca [Algorithmica 2023] proved that this problem admits a kernel with $O(k^3)$ vertices. This result heavily relies on the fact that the size of trivially perfect modules can be bounded by $O(k^2)$ as shown by Drange and Pilipczuk [Algorithmica 2018]. To obtain their cubic vertex-kernel, Dumas, Perez and Todinca [Algorithmica 2023] then showed that a more intricate structure, so-called \emph{comb}, can be reduced to $O(k^2)$ vertices. In this work we show that the bound can be improved to $O(k)$ for both aforementioned structures and thus obtain a kernel with $O(k^2)$ vertices. Our approach relies on the straightforward yet powerful observation that any large enough structure contains unaffected vertices whose neighborhood remains unchanged by an editing of size $k$, implying strong structural properties.
The categorical models of the differential lambda-calculus are additive categories because of the Leibniz rule which requires the summation of two expressions. This means that, as far as the differential lambda-calculus and differential linear logic are concerned, these models feature finite non-determinism and indeed these languages are essentially non-deterministic. In a previous paper we introduced a categorical framework for differentiation which does not require additivity and is compatible with deterministic models such as coherence spaces and probabilistic models such as probabilistic coherence spaces. Based on this semantics we develop a syntax of a deterministic version of the differential lambda-calculus. One nice feature of this new approach to differentiation is that it is compatible with general fixpoints of terms, so our language is actually a differential extension of PCF for which we provide a fully deterministic operational semantics.
We describe a $\frac{4}{3}$-approximation algorithm for the traveling salesman problem in which the distances between points are induced by graph-theoretical distances in an unweighted graph. The algorithm is based on finding a minimum cost perfect matching on the odd degree vertices of a carefully computed 2-edge-connected spanning subgraph.
We describe Bayes factors functions based on z, t, $\chi^2$, and F statistics and the prior distributions used to define alternative hypotheses. The non-local alternative prior distributions are centered on standardized effects, which index the Bayes factor function. The prior densities include a dispersion parameter that models the variation of effect sizes across replicated experiments. We examine the convergence rates of Bayes factor functions under true null and true alternative hypotheses. Several examples illustrate the application of the Bayes factor functions to replicated experimental designs and compare the conclusions from these analyses to other default Bayes factor methods.
Let ${\mathcal P}$ be a family of probability measures on a measurable space $(S,{\mathcal A}).$ Given a Banach space $E,$ a functional $f:E\mapsto {\mathbb R}$ and a mapping $\theta: {\mathcal P}\mapsto E,$ our goal is to estimate $f(\theta(P))$ based on i.i.d. observations $X_1,\dots, X_n\sim P, P\in {\mathcal P}.$ In particular, if ${\mathcal P}=\{P_{\theta}: \theta\in \Theta\}$ is an identifiable statistical model with parameter set $\Theta\subset E,$ one can consider the mapping $\theta(P)=\theta$ for $P\in {\mathcal P}, P=P_{\theta},$ resulting in a problem of estimation of $f(\theta)$ based on i.i.d. observations $X_1,\dots, X_n\sim P_{\theta}, \theta\in \Theta.$ Given a smooth functional $f$ and estimators $\hat \theta_n(X_1,\dots, X_n), n\geq 1$ of $\theta(P),$ we use these estimators, the sample split and the Taylor expansion of $f(\theta(P))$ of a proper order to construct estimators $T_f(X_1,\dots, X_n)$ of $f(\theta(P)).$ For these estimators and for a functional $f$ of smoothness $s\geq 1,$ we prove upper bounds on the $L_p$-errors of estimator $T_f(X_1,\dots, X_n)$ under certain moment assumptions on the base estimators $\hat \theta_n.$ We study the performance of estimators $T_f(X_1,\dots, X_n)$ in several concrete problems, showing their minimax optimality and asymptotic efficiency. In particular, this includes functional estimation in high-dimensional models with many low dimensional components, functional estimation in high-dimensional exponential families and estimation of functionals of covariance operators in infinite-dimensional subgaussian models.
We study optimization problems in a metric space $(\mathcal{X},d)$ where we can compute distances in two ways: via a ''strong'' oracle that returns exact distances $d(x,y)$, and a ''weak'' oracle that returns distances $\tilde{d}(x,y)$ which may be arbitrarily corrupted with some probability. This model captures the increasingly common trade-off between employing both an expensive similarity model (e.g. a large-scale embedding model), and a less accurate but cheaper model. Hence, the goal is to make as few queries to the strong oracle as possible. We consider both so-called ''point queries'', where the strong oracle is queried on a set of points $S \subset \mathcal{X} $ and returns $d(x,y)$ for all $x,y \in S$, and ''edge queries'' where it is queried for individual distances $d(x,y)$. Our main contributions are optimal algorithms and lower bounds for clustering and Minimum Spanning Tree (MST) in this model. For $k$-centers, $k$-median, and $k$-means, we give constant factor approximation algorithms with only $\tilde{O}(k)$ strong oracle point queries, and prove that $\Omega(k)$ queries are required for any bounded approximation. For edge queries, our upper and lower bounds are both $\tilde{\Theta}(k^2)$. Surprisingly, for the MST problem we give a $O(\sqrt{\log n})$ approximation algorithm using no strong oracle queries at all, and a matching $\Omega(\sqrt{\log n})$ lower bound. We empirically evaluate our algorithms, and show that their quality is comparable to that of the baseline algorithms that are given all true distances, but while querying the strong oracle on only a small fraction ($<1\%$) of points.
Conformal Prediction (CP) allows to perform rigorous uncertainty quantification by constructing a prediction set $C(X)$ satisfying $\mathbb{P}(Y \in C(X))\geq 1-\alpha$ for a user-chosen $\alpha \in [0,1]$ by relying on calibration data $(X_1,Y_1),...,(X_n,Y_n)$ from $\mathbb{P}=\mathbb{P}^{X} \otimes \mathbb{P}^{Y|X}$. It is typically implicitly assumed that $\mathbb{P}^{Y|X}$ is the "true" posterior label distribution. However, in many real-world scenarios, the labels $Y_1,...,Y_n$ are obtained by aggregating expert opinions using a voting procedure, resulting in a one-hot distribution $\mathbb{P}_{vote}^{Y|X}$. For such ``voted'' labels, CP guarantees are thus w.r.t. $\mathbb{P}_{vote}=\mathbb{P}^X \otimes \mathbb{P}_{vote}^{Y|X}$ rather than the true distribution $\mathbb{P}$. In cases with unambiguous ground truth labels, the distinction between $\mathbb{P}_{vote}$ and $\mathbb{P}$ is irrelevant. However, when experts do not agree because of ambiguous labels, approximating $\mathbb{P}^{Y|X}$ with a one-hot distribution $\mathbb{P}_{vote}^{Y|X}$ ignores this uncertainty. In this paper, we propose to leverage expert opinions to approximate $\mathbb{P}^{Y|X}$ using a non-degenerate distribution $\mathbb{P}_{agg}^{Y|X}$. We develop Monte Carlo CP procedures which provide guarantees w.r.t. $\mathbb{P}_{agg}=\mathbb{P}^X \otimes \mathbb{P}_{agg}^{Y|X}$ by sampling multiple synthetic pseudo-labels from $\mathbb{P}_{agg}^{Y|X}$ for each calibration example $X_1,...,X_n$. In a case study of skin condition classification with significant disagreement among expert annotators, we show that applying CP w.r.t. $\mathbb{P}_{vote}$ under-covers expert annotations: calibrated for $72\%$ coverage, it falls short by on average $10\%$; our Monte Carlo CP closes this gap both empirically and theoretically.
Matrix-product constructions giving rise to locally recoverable codes are considered, both the classical $r$ and $(r,\delta)$ localities. We study the recovery advantages offered by the constituent codes and also by the defining matrices of the matrix product codes. Finally, we extend these methods to a particular variation of matrix-product codes and quasi-cyclic codes. Singleton-optimal locally recoverable codes and almost Singleton-optimal codes, with length larger than the finite field size, are obtained, some of them with superlinear length.
We provide a new proof of Maurer, Renard, and Pietzak's result that the sum of the nCPA advantages of random permutations $P$ and $Q$ bound the CCA advantage of $P^{-1} \circ Q$. Our proof uses probability directly, as opposed to information theory, and has the advantage of providing an alternate sufficient condition of low CCA advantage. Namely, the CCA advantage of a random permutation can be bounded by its separation distance from the uniform distribution. We use this alternate condition to tighten the best known bound on the security of the swap-or-not shuffle in the special case of having fewer queries than the square root of the number of cards.
Suppose a finite, unweighted, combinatorial graph $G = (V,E)$ is the union of several (degree-)regular graphs which are then additionally connected with a few additional edges. $G$ will then have only a small number of vertices $v \in V$ with the property that one of their neighbors $(v,w) \in E$ has a higher degree $\mbox{deg}(w) > \mbox{deg}(v)$. We prove the converse statement: if a graph has few vertices having a neighbor with higher degree and satisfies a mild regularity condition, then, via adding and removing a few edges, the graph can be turned into a disjoint union of (distance-)regular graphs. The number of edge operations depends on the maximum degree and number of vertices with a higher degree neighbor but is independent of the size of $|V|$.