The categorical models of the differential lambda-calculus are additive categories because of the Leibniz rule which requires the summation of two expressions. This means that, as far as the differential lambda-calculus and differential linear logic are concerned, these models feature finite non-determinism and indeed these languages are essentially non-deterministic. In a previous paper we introduced a categorical framework for differentiation which does not require additivity and is compatible with deterministic models such as coherence spaces and probabilistic models such as probabilistic coherence spaces. Based on this semantics we develop a syntax of a deterministic version of the differential lambda-calculus. One nice feature of this new approach to differentiation is that it is compatible with general fixpoints of terms, so our language is actually a differential extension of PCF for which we provide a fully deterministic operational semantics.
Despite large-scale diffusion models being highly capable of generating diverse open-world content, they still struggle to match the photorealism and fidelity of concept-specific generators. In this work, we present the task of customizing large-scale diffusion priors for specific concepts as concept-centric personalization. Our goal is to generate high-quality concept-centric images while maintaining the versatile controllability inherent to open-world models, enabling applications in diverse tasks such as concept-centric stylization and image translation. To tackle these challenges, we identify catastrophic forgetting of guidance prediction from diffusion priors as the fundamental issue. Consequently, we develop a guidance-decoupled personalization framework specifically designed to address this task. We propose Generalized Classifier-free Guidance (GCFG) as the foundational theory for our framework. This approach extends Classifier-free Guidance (CFG) to accommodate an arbitrary number of guidances, sourced from a variety of conditions and models. Employing GCFG enables us to separate conditional guidance into two distinct components: concept guidance for fidelity and control guidance for controllability. This division makes it feasible to train a specialized model for concept guidance, while ensuring both control and unconditional guidance remain intact. We then present a null-text Concept-centric Diffusion Model as a concept-specific generator to learn concept guidance without the need for text annotations. Code will be available at //github.com/PRIV-Creation/Concept-centric-Personalization.
Given any finite set equipped with a probability measure, one may compute its Shannon entropy or information content. The entropy becomes the logarithm of the cardinality of the set when the uniform probability is used. Leinster introduced a notion of Euler characteristic for certain finite categories, also known as magnitude, that can be seen as a categorical generalization of cardinality. This paper aims to connect the two ideas by considering the extension of Shannon entropy to finite categories endowed with probability, in such a way that the magnitude is recovered when a certain choice of "uniform" probability is made.
Unveil, model, and comprehend the causal mechanisms underpinning natural phenomena stand as fundamental endeavors across myriad scientific disciplines. Meanwhile, new knowledge emerges when discovering causal relationships from data. Existing causal learning algorithms predominantly focus on the isolated effects of variables, overlook the intricate interplay of multiple variables and their collective behavioral patterns. Furthermore, the ubiquity of high-dimensional data exacts a substantial temporal cost for causal algorithms. In this paper, we develop a novel method called MgCSL (Multi-granularity Causal Structure Learning), which first leverages sparse auto-encoder to explore coarse-graining strategies and causal abstractions from micro-variables to macro-ones. MgCSL then takes multi-granularity variables as inputs to train multilayer perceptrons and to delve the causality between variables. To enhance the efficacy on high-dimensional data, MgCSL introduces a simplified acyclicity constraint to adeptly search the directed acyclic graph among variables. Experimental results show that MgCSL outperforms competitive baselines, and finds out explainable causal connections on fMRI datasets.
We present a parallel algorithm for the fast Fourier transform (FFT) in higher dimensions. This algorithm generalizes the cyclic-to-cyclic one-dimensional parallel algorithm to a cyclic-to-cyclic multidimensional parallel algorithm while retaining the property of needing only a single all-to-all communication step. This is under the constraint that we use at most $\sqrt{N}$ processors for an FFT on an array with a total of $N$ elements, irrespective of the dimension $d$ or the shape of the array. The only assumption we make is that $N$ is sufficiently composite. Our algorithm starts and ends in the same data distribution. We present our multidimensional implementation FFTU which utilizes the sequential FFTW program for its local FFTs, and which can handle any dimension $d$. We obtain experimental results for $d\leq 5$ using MPI on up to 4096 cores of the supercomputer Snellius, comparing FFTU with the parallel FFTW program and with PFFT and heFFTe. These results show that FFTU is competitive with the state of the art and that it allows one to use a larger number of processors, while keeping communication limited to a single all-to-all operation. For arrays of size $1024^3$ and $64^5$, FFTU achieves a speedup of a factor 149 and 176, respectively, on 4096 processors.
Differentiating noisy, discrete measurements in order to fit an ordinary differential equation can be unreasonably effective. Assuming square-integrable noise and minimal flow regularity, we construct and analyze a finite-difference differentiation filter and a Tikhonov-regularized least squares estimator for the continuous-time parameter-linear system. Combining these contributions in series, we obtain a finite-sample bound on mean absolute error of estimation. As a by-product, we offer a novel analysis of stochastically perturbed Moore-Penrose pseudoinverses.
We present fast simulation methods for the self-assembly of complex shapes in two dimensions. The shapes are modeled via a general boundary curve and interact via a standard volume term promoting overlap and an interpenetration penalty. To efficiently realize the Gibbs measure on the space of possible configurations we employ the hybrid Monte Carlo algorithm together with a careful use of signed distance functions for energy evaluation. Motivated by the self-assembly of identical coat proteins of the tobacco mosaic virus which assemble into a helical shell, we design a particular nonconvex 2D model shape and demonstrate its robust self-assembly into a unique final state. Our numerical experiments reveal two essential prerequisites for this self-assembly process: blocking and matching (i.e., local repulsion and attraction) of different parts of the boundary; and nonconvexity and handedness of the shape.
This paper considers the problem of robust iterative Bayesian smoothing in nonlinear state-space models with additive noise using Gaussian approximations. Iterative methods are known to improve smoothed estimates but are not guaranteed to converge, motivating the development of more robust versions of the algorithms. The aim of this article is to present Levenberg-Marquardt (LM) and line-search extensions of the classical iterated extended Kalman smoother (IEKS) as well as the iterated posterior linearisation smoother (IPLS). The IEKS has previously been shown to be equivalent to the Gauss-Newton (GN) method. We derive a similar GN interpretation for the IPLS. Furthermore, we show that an LM extension for both iterative methods can be achieved with a simple modification of the smoothing iterations, enabling algorithms with efficient implementations. Our numerical experiments show the importance of robust methods, in particular for the IEKS-based smoothers. The computationally expensive IPLS-based smoothers are naturally robust but can still benefit from further regularisation.
Recent progress in inpainting increasingly relies on generative models, leveraging their strong generation capabilities for addressing ill-conditioned problems. However, this enhanced generation often introduces instability, leading to arbitrary object generation within masked regions. This paper proposes a balanced solution, emphasizing the importance of unmasked regions in guiding inpainting while preserving generative capacity. Our approach, Aligned Stable Inpainting with UnKnown Areas Prior (ASUKA), employs a reconstruction-based masked auto-encoder (MAE) as a stable prior. Aligned with the robust Stable Diffusion inpainting model (SD), ASUKA significantly improves inpainting stability. ASUKA further aligns masked and unmasked regions through an inpainting-specialized decoder, ensuring more faithful inpainting. To validate effectiveness across domains and masking scenarios, we evaluate on MISATO, a collection of several existing dataset. Results confirm ASUKA's efficacy in both stability and fidelity compared to SD and other inpainting algorithms.
We introduce a framework for constructing quantum codes defined on spheres by recasting such codes as quantum analogues of the classical spherical codes. We apply this framework to bosonic coding, obtaining multimode extensions of the cat codes that can outperform previous constructions while requiring a similar type of overhead. Our polytope-based cat codes consist of sets of points with large separation that at the same time form averaging sets known as spherical designs. We also recast concatenations of CSS codes with cat codes as quantum spherical codes, revealing a new way to autonomously protect against dephasing noise.
This PhD thesis contains several contributions to the field of statistical causal modeling. Statistical causal models are statistical models embedded with causal assumptions that allow for the inference and reasoning about the behavior of stochastic systems affected by external manipulation (interventions). This thesis contributes to the research areas concerning the estimation of causal effects, causal structure learning, and distributionally robust (out-of-distribution generalizing) prediction methods. We present novel and consistent linear and non-linear causal effects estimators in instrumental variable settings that employ data-dependent mean squared prediction error regularization. Our proposed estimators show, in certain settings, mean squared error improvements compared to both canonical and state-of-the-art estimators. We show that recent research on distributionally robust prediction methods has connections to well-studied estimators from econometrics. This connection leads us to prove that general K-class estimators possess distributional robustness properties. We, furthermore, propose a general framework for distributional robustness with respect to intervention-induced distributions. In this framework, we derive sufficient conditions for the identifiability of distributionally robust prediction methods and present impossibility results that show the necessity of several of these conditions. We present a new structure learning method applicable in additive noise models with directed trees as causal graphs. We prove consistency in a vanishing identifiability setup and provide a method for testing substructure hypotheses with asymptotic family-wise error control that remains valid post-selection. Finally, we present heuristic ideas for learning summary graphs of nonlinear time-series models.