亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Enabling Large Language Models (LLMs) to interact with 3D environments is challenging. Existing approaches extract point clouds either from ground truth (GT) geometry or 3D scenes reconstructed by auxiliary models. Text-image aligned 2D features from CLIP are then lifted to point clouds, which serve as inputs for LLMs. However, this solution lacks the establishment of 3D point-to-point connections, leading to a deficiency of spatial structure information. Concurrently, the absence of integration and unification between the geometric and semantic representations of the scene culminates in a diminished level of 3D scene understanding. In this paper, we demonstrate the importance of having a unified scene representation and reconstruction framework, which is essential for LLMs in 3D scenes. Specifically, we introduce Uni3DR^2 extracts 3D geometric and semantic aware representation features via the frozen pre-trained 2D foundation models (e.g., CLIP and SAM) and a multi-scale aggregate 3D decoder. Our learned 3D representations not only contribute to the reconstruction process but also provide valuable knowledge for LLMs. Experimental results validate that our Uni3DR^2 yields convincing gains over the baseline on the 3D reconstruction dataset ScanNet (increasing F-Score by +1.8\%). When applied to LLMs, our Uni3DR^2-LLM exhibits superior performance over the baseline on the 3D vision-language understanding dataset ScanQA (increasing BLEU-1 by +4.0\% and +4.2\% on the val set and test set, respectively). Furthermore, it outperforms the state-of-the-art method that uses additional GT point clouds on both ScanQA and 3DMV-VQA.

相關內容

3D是(shi)英(ying)文(wen)“Three Dimensions”的簡稱,中文(wen)是(shi)指三維、三個(ge)維度、三個(ge)坐標(biao),即有長、有寬(kuan)、有高,換(huan)句話說,就是(shi)立體的,是(shi)相對于只(zhi)有長和寬(kuan)的平面(mian)(2D)而言。

A key challenge in e-learning environments like Intelligent Tutoring Systems (ITSs) is to induce effective pedagogical policies efficiently. While Deep Reinforcement Learning (DRL) often suffers from sample inefficiency and reward function design difficulty, Apprenticeship Learning(AL) algorithms can overcome them. However, most AL algorithms can not handle heterogeneity as they assume all demonstrations are generated with a homogeneous policy driven by a single reward function. Still, some AL algorithms which consider heterogeneity, often can not generalize to large continuous state space and only work with discrete states. In this paper, we propose an expectation-maximization(EM)-EDM, a general AL framework to induce effective pedagogical policies from given optimal or near-optimal demonstrations, which are assumed to be driven by heterogeneous reward functions. We compare the effectiveness of the policies induced by our proposed EM-EDM against four AL-based baselines and two policies induced by DRL on two different but related tasks that involve pedagogical action prediction. Our overall results showed that, for both tasks, EM-EDM outperforms the four AL baselines across all performance metrics and the two DRL baselines. This suggests that EM-EDM can effectively model complex student pedagogical decision-making processes through the ability to manage a large, continuous state space and adapt to handle diverse and heterogeneous reward functions with very few given demonstrations.

The future 6G network is envisioned to be AI-native, and as such, ML models will be pervasive in support of optimizing performance, reducing energy consumption, and in coping with increasing complexity and heterogeneity. A key challenge is automating the process of finding optimal model architectures satisfying stringent requirements stemming from varying tasks, dynamicity and available resources in the infrastructure and deployment positions. In this paper, we describe and review the state-of-the-art in Neural Architecture Search and Transfer Learning and their applicability in networking. Further, we identify open research challenges and set directions with a specific focus on three main requirements with elements unique to the future network, namely combining NAS and TL, multi-objective search, and tabular data. Finally, we outline and discuss both near-term and long-term work ahead.

Federated Unlearning (FU) is gaining prominence for its capacity to eliminate influences of Federated Learning (FL) users' data from trained global FL models. A straightforward FU method involves removing the unlearned users and subsequently retraining a new global FL model from scratch with all remaining users, a process that leads to considerable overhead. To enhance unlearning efficiency, a widely adopted strategy employs clustering, dividing FL users into clusters, with each cluster maintaining its own FL model. The final inference is then determined by aggregating the majority vote from the inferences of these sub-models. This method confines unlearning processes to individual clusters for removing a user, thereby enhancing unlearning efficiency by eliminating the need for participation from all remaining users. However, current clustering-based FU schemes mainly concentrate on refining clustering to boost unlearning efficiency but overlook the potential information leakage from FL users' gradients, a privacy concern that has been extensively studied. Typically, integrating secure aggregation (SecAgg) schemes within each cluster can facilitate a privacy-preserving FU. Nevertheless, crafting a clustering methodology that seamlessly incorporates SecAgg schemes is challenging, particularly in scenarios involving adversarial users and dynamic users. In this connection, we systematically explore the integration of SecAgg protocols within the most widely used federated unlearning scheme, which is based on clustering, to establish a privacy-preserving FU framework, aimed at ensuring privacy while effectively managing dynamic user participation. Comprehensive theoretical assessments and experimental results show that our proposed scheme achieves comparable unlearning effectiveness, alongside offering improved privacy protection and resilience in the face of varying user participation.

Previous work has demonstrated that, in the Variance Preserving (VP) scenario, the nascent Directly Denoising Diffusion Models (DDDM) can generate high-quality images in one step while achieving even better performance in multistep sampling. However, the Pseudo-LPIPS loss used in DDDM leads to concerns about the bias in assessment. Here, we propose a unified DDDM (uDDDM) framework that generates images in one-step/multiple steps for both Variance Preserving (VP) and Variance Exploding (VE) cases. We provide theoretical proofs of the existence and uniqueness of the model's solution paths, as well as the non-intersecting property of the sampling paths. Additionally, we propose an adaptive Pseudo-Huber loss function to balance the convergence to the true solution and the stability of convergence process.Through a comprehensive evaluation, we demonstrate that uDDDMs achieve FID scores comparable to the best-performing methods available for CIFAR-10 in both VP and VE. Specifically, uDDDM achieves one-step generation on CIFAR10 with FID of 2.63 and 2.53 for VE and VP respectively. By extending the sampling to 1000 steps, we further reduce FID score to 1.71 and 1.65 for VE and VP respectively, setting state-of-the-art performance in both cases.

We present FunLess, a Function-as-a-Service (FaaS) platform tailored for the private edge cloud system. FunLess responds to recent trends that advocate for extending the coverage of serverless computing to private edge cloud systems and enhancing latency, security, and privacy while improving resource usage. Unlike existing solutions that rely on containers for function invocation, FunLess leverages WebAssembly (Wasm) as its runtime environment. Wasm's lightweight, sandboxed runtime is crucial to have functions run on constrained devices at the edge. Moreover, the advantages of using Wasm in FunLess include a consistent development and deployment environment for users and function portability (write once, run everywhere) We validate FunLess under different deployment scenarios, characterised by the presence/absence of constrained-resource devices (Raspberry Pi 3B+) and the (in)accessibility of container orchestration technologies - Kubernetes. We compare FunLess with three production-ready, widely adopted open-source FaaS platforms - OpenFaaS, Fission, and Knative. Our benchmarks confirm that FunLess is a proper solution for FaaS private edge cloud systems since it achieves performance comparable to the considered FaaS alternatives while it is the only fully-deployable alternative on constrained-resource devices, thanks to its small memory footprint.

Graph neural networks (GNNs) have achieved great success for a variety of tasks such as node classification, graph classification, and link prediction. However, the use of GNNs (and machine learning more generally) to solve combinatorial optimization (CO) problems is much less explored. Here, we introduce a novel GNN architecture which leverages a complex filter bank and localized attention mechanisms designed to solve CO problems on graphs. We show how our method differentiates itself from prior GNN-based CO solvers and how it can be effectively applied to the maximum clique, minimum dominating set, and maximum cut problems in a self-supervised learning setting. In addition to demonstrating competitive overall performance across all tasks, we establish state-of-the-art results for the max cut problem.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司