In this paper, we develop the constrained energy minimizing generalized multiscale finite element method (CEM-GMsFEM) with mixed boundary conditions (Dirichlet and Neumann) for the elasticity equations in high contrast media. By a special treatment of mixed boundary conditions separately, and combining the construction of the relaxed and constraint version of the CEM-GMsFEM, we discover that the method offers some advantages such as the independence of the target region's contrast from precision, while the sizes of oversampling domains have a significant impact on numerical accuracy. Moreover, to our best knowledge, this is the first proof of the convergence of the CEM-GMsFEM with mixed boundary conditions for the elasticity equations given. Some numerical experiments are provided to demonstrate the method's performance.
Consider the semigroup of random walk on a complete graph, which we call the Potts semigroup. Diaconis and Saloff-Coste computed the maximum of the ratio of the relative entropy and the Dirichlet form obtaining the constant $\alpha_2$ in the $2$-log-Sobolev inequality ($2$-LSI). In this paper, we obtain the best possible non-linear inequality relating entropy and the Dirichlet form (i.e., $p$-NLSI, $p\ge1$). As an example, we show $\alpha_1 = 1+\frac{1+o(1)}{\log k}$. By integrating the $1$-NLSI we obtain the new strong data processing inequality (SDPI), which in turn allows us to improve results of Mossel and Peres on reconstruction thresholds for Potts models on trees. A special case is the problem of reconstructing color of the root of a $k$-colored tree given knowledge of colors of all the leaves. We show that to have a non-trivial reconstruction probability the branching number of the tree should be at least $$\frac{\log k}{\log k - \log(k-1)} = (1-o(1))k\log k.$$ This recovers previous results (of Sly and Bhatnagar et al.) in (slightly) more generality, but more importantly avoids the need for any coloring-specialized arguments. Similarly, we improve the state-of-the-art on the weak recovery threshold for the stochastic block model with $k$ balanced groups, for all $k\ge 3$. To further show the power of our method, we prove optimal non-reconstruction results for a broadcasting on trees model with Gaussian kernels, closing a gap left open by Eldan et al. These improvements advocate information-theoretic methods as a useful complement to the conventional techniques originating from the statistical physics.
We provide a concise review of the exponentially convergent multiscale finite element method (ExpMsFEM) for efficient model reduction of PDEs in heterogeneous media without scale separation and in high-frequency wave propagation. ExpMsFEM is built on the non-overlapped domain decomposition in the classical MsFEM while enriching the approximation space systematically to achieve a nearly exponential convergence rate regarding the number of basis functions. Unlike most generalizations of MsFEM in the literature, ExpMsFEM does not rely on any partition of unity functions. In general, it is necessary to use function representations dependent on the right-hand side to break the algebraic Kolmogorov $n$-width barrier to achieve exponential convergence. Indeed, there are online and offline parts in the function representation provided by ExpMsFEM. The online part depends on the right-hand side locally and can be computed in parallel efficiently. The offline part contains basis functions that are used in the Galerkin method to assemble the stiffness matrix; they are all independent of the right-hand side, so the stiffness matrix can be used repeatedly in multi-query scenarios.
Multifidelity methods are widely used for estimating quantities of interest (QoI) in computational science by employing numerical simulations of differing costs and accuracies. Many methods approximate numerical-valued statistics that represent only limited information, e.g., scalar statistics, about the QoI. Further quantification of uncertainty, e.g., for risk assessment, failure probabilities, or confidence intervals, requires estimation of the full distributions. In this paper, we generalize the ideas in [Xu et al., SIAM J. Sci. Comput. 44.1 (2022), A150-A175] to develop a multifidelity method that approximates the full distribution of scalar-valued QoI. The main advantage of our approach compared to alternative methods is that we require no particular relationships among the high and lower-fidelity models (e.g. model hierarchy), and we do not assume any knowledge of model statistics including correlations and other cross-model statistics before the procedure starts. Under suitable assumptions in the framework above, we achieve provable 1-Wasserstein metric convergence of an algorithmically constructed distributional emulator via an exploration-exploitation strategy. We also prove that crucial policy actions taken by our algorithm are budget-asymptotically optimal. Numerical experiments are provided to support our theoretical analysis.
The status of retinal arteriovenous crossing is of great significance for clinical evaluation of arteriolosclerosis and systemic hypertension. As an ophthalmology diagnostic criteria, Scheie's classification has been used to grade the severity of arteriolosclerosis. In this paper, we propose a deep learning approach to support the diagnosis process, which, to the best of our knowledge, is one of the earliest attempts in medical imaging. The proposed pipeline is three-fold. First, we adopt segmentation and classification models to automatically obtain vessels in a retinal image with the corresponding artery/vein labels and find candidate arteriovenous crossing points. Second, we use a classification model to validate the true crossing point. At last, the grade of severity for the vessel crossings is classified. To better address the problem of label ambiguity and imbalanced label distribution, we propose a new model, named multi-diagnosis team network (MDTNet), in which the sub-models with different structures or different loss functions provide different decisions. MDTNet unifies these diverse theories to give the final decision with high accuracy. Our severity grading method was able to validate crossing points with precision and recall of 96.3% and 96.3%, respectively. Among correctly detected crossing points, the kappa value for the agreement between the grading by a retina specialist and the estimated score was 0.85, with an accuracy of 0.92. The numerical results demonstrate that our method can achieve a good performance in both arteriovenous crossing validation and severity grading tasks. By the proposed models, we could build a pipeline reproducing retina specialist's subjective grading without feature extractions. The code is available for reproducibility.
We propose a conservative energy method based on neural networks with subdomains for solving variational problems (CENN), where the admissible function satisfying the essential boundary condition without boundary penalty is constructed by the radial basis function (RBF), particular solution neural network, and general neural network. The loss term is the potential energy, optimized based on the principle of minimum potential energy. The loss term at the interfaces has the lower order derivative compared to the strong form PINN with subdomains. The advantage of the proposed method is higher efficiency, more accurate, and less hyperparameters than the strong form PINN with subdomains. Another advantage of the proposed method is that it can apply to complex geometries based on the special construction of the admissible function. To analyze its performance, the proposed method CENN is used to model representative PDEs, the examples include strong discontinuity, singularity, complex boundary, non-linear, and heterogeneous problems. Furthermore, it outperforms other methods when dealing with heterogeneous problems.
Multiscale Finite Element Methods (MsFEMs) are now well-established finite element type approaches dedicated to multiscale problems. They first compute local, oscillatory, problem-dependent basis functions that generate a suitable discretization space, and next perform a Galerkin approximation of the problem on that space. We investigate here how these approaches can be implemented in a non-intrusive way, in order to facilitate their dissemination within industrial codes or non-academic environments. We develop an abstract framework that covers a wide variety of MsFEMs for linear second-order partial differential equations. Non-intrusive MsFEM approaches are developed within the full generality of this framework, which may moreover be beneficial to steering software development and improving the theoretical understanding and analysis of MsFEMs.
For basic machine learning problems, expected error is used to evaluate model performance. Since the distribution of data is usually unknown, we can make simple hypothesis that the data are sampled independently and identically distributed (i.i.d.) and the mean value of loss function is used as the empirical risk by Law of Large Numbers (LLN). This is known as the Monte Carlo method. However, when LLN is not applicable, such as imbalanced data problems, empirical risk will cause overfitting and might decrease robustness and generalization ability. Inspired by the framework of nonlinear expectation theory, we substitute the mean value of loss function with the maximum value of subgroup mean loss. We call it nonlinear Monte Carlo method. In order to use numerical method of optimization, we linearize and smooth the functional of maximum empirical risk and get the descent direction via quadratic programming. With the proposed method, we achieve better performance than SOTA backbone models with less training steps, and more robustness for basic regression and imbalanced classification tasks.
Mixed-Integer Linear Programming (MILP) plays an important role across a range of scientific disciplines and within areas of strategic importance to society. The MILP problems, however, suffer from combinatorial complexity. Because of integer decision variables, as the problem size increases, the number of possible solutions increases super-linearly thereby leading to a drastic increase in the computational effort. To efficiently solve MILP problems, a "price-based" decomposition and coordination approach is developed to exploit 1. the super-linear reduction of complexity upon the decomposition and 2. the geometric convergence potential inherent to Polyak's stepsizing formula for the fastest coordination possible to obtain near-optimal solutions in a computationally efficient manner. Unlike all previous methods to set stepsizes heuristically by adjusting hyperparameters, the key novel way to obtain stepsizes is purely decision-based: a novel "auxiliary" constraint satisfaction problem is solved, from which the appropriate stepsizes are inferred. Testing results for large-scale Generalized Assignment Problems (GAP) demonstrate that for the majority of instances, certifiably optimal solutions are obtained. For stochastic job-shop scheduling as well as for pharmaceutical scheduling, computational results demonstrate the two orders of magnitude speedup as compared to Branch-and-Cut (B&C). The new method has a major impact on the efficient resolution of complex Mixed-Integer Programming (MIP) problems arising within a variety of scientific fields.
Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.
The field of few-shot learning has recently seen substantial advancements. Most of these advancements came from casting few-shot learning as a meta-learning problem. Model Agnostic Meta Learning or MAML is currently one of the best approaches for few-shot learning via meta-learning. MAML is simple, elegant and very powerful, however, it has a variety of issues, such as being very sensitive to neural network architectures, often leading to instability during training, requiring arduous hyperparameter searches to stabilize training and achieve high generalization and being very computationally expensive at both training and inference times. In this paper, we propose various modifications to MAML that not only stabilize the system, but also substantially improve the generalization performance, convergence speed and computational overhead of MAML, which we call MAML++.