亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper studies noisy index coding problems over single-input single-output broadcast channels. The codewords from a chosen index code of length $N$ are transmitted after $2^N$-PSK modulation over an AWGN channel. In "Index Coded PSK Modulation for prioritized Receivers," the authors showed that when a length-$N$ index code is transmitted as a $2^N$-PSK symbol, the ML decoder at a receiver decodes directly to the message bit rather than following the two-step decoding process of first demodulating the PSK symbol and equivalently the index-coded bits and then doing index-decoding. In this paper, we consider unprioritized receivers and follow the two-step decoding process at the receivers. After estimating the PSK symbol using an ML decoder, at a receiver, there might be more than one decoding strategy, i.e., a linear combination of index-coded bits and different subsets of side information bits, that can be used to estimate the requested message. Thomas et al. in ["Single Uniprior Index Coding With Min Max Probability of Error Over Fading Channels,"] showed that for binary-modulated index code transmissions, minimizing the number of transmissions used to decode a requested message is equivalent to minimizing the probability of error. This paper shows that this is no longer the case while employing multi-level modulations. Further, we consider that the side information available to each receiver is also noisy and derive an expression for the probability that a requested message bit is estimated erroneously at a receiver. We also show that the criterion for choosing a decoding strategy that gives the best probability of error performance at a receiver changes with the signal-to-noise ratio at which the side information is broadcast.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 無限 · 相互獨立的 · 值域 · 泛函 ·
2023 年 7 月 7 日

Cook and Reckhow 1979 pointed out that NP is not closed under complementation iff there is no propositional proof system that admits polynomial size proofs of all tautologies. Theory of proof complexity generators aims at constructing sets of tautologies hard for strong and possibly for all proof systems. We focus at a conjecture from K.2004 in foundations of the theory that there is a proof complexity generator hard for all proof systems. This can be equivalently formulated (for p-time generators) without a reference to proof complexity notions as follows: * There exist a p-time function $g$ stretching each input by one bit such that its range intersects all infinite NP sets. We consider several facets of this conjecture, including its links to bounded arithmetic (witnessing and independence results), to time-bounded Kolmogorov complexity, to feasible disjunction property of propositional proof systems and to complexity of proof search. We argue that a specific gadget generator from K.2009 is a good candidate for $g$. We define a new hardness property of generators, the $\bigvee$-hardness, and shows that one specific gadget generator is the $\bigvee$-hardest (w.r.t. any sufficiently strong proof system). We define the class of feasibly infinite NP sets and show, assuming a hypothesis from circuit complexity, that the conjecture holds for all feasibly infinite NP sets.

In this paper, we present a method to encrypt dynamic controllers that can be implemented through most homomorphic encryption schemes, including somewhat, leveled fully, and fully homomorphic encryption. To this end, we represent the output of the given controller as a linear combination of a fixed number of previous inputs and outputs. As a result, the encrypted controller involves only a limited number of homomorphic multiplications on every encrypted data, assuming that the output is re-encrypted and transmitted back from the actuator. A guidance for parameter choice is also provided, ensuring that the encrypted controller achieves predefined performance for an infinite time horizon. Furthermore, we propose a customization of the method for Ring-Learning With Errors (Ring-LWE) based cryptosystems, where a vector of messages can be encrypted into a single ciphertext and operated simultaneously, thus reducing computation and communication loads. Unlike previous results, the proposed customization does not require extra algorithms such as rotation, other than basic addition and multiplication. Simulation results demonstrate the effectiveness of the proposed method.

In orthogonal time sequency multiplexing (OTSM) modulation, the information symbols are conveyed in the delay-sequency domain upon exploiting the inverse Walsh Hadamard transform (IWHT). It has been shown that OTSM is capable of attaining a bit error ratio (BER) similar to that of orthogonal time-frequency space (OTFS) modulation at a lower complexity, since the saving of multiplication operations in the IWHT. Hence we provide its BER performance analysis and characterize its detection complexity. We commence by deriving its generalized input-output relationship and its unconditional pairwise error probability (UPEP). Then, its BER upper bound is derived in closed form under both ideal and imperfect channel estimation conditions, which is shown to be tight at moderate to high signal-to-noise ratios (SNRs). Moreover, a novel approximate message passing (AMP) aided OTSM detection framework is proposed. Specifically, to circumvent the high residual BER of the conventional AMP detector, we proposed a vector AMP-based expectation-maximization (VAMP-EM) detector for performing joint data detection and noise variance estimation. The variance auto-tuning algorithm based on the EM algorithm is designed for the VAMP-EM detector to further improve the convergence performance. The simulation results illustrate that the VAMP-EM detector is capable of striking an attractive BER vs. complexity trade-off than the state-of-the-art schemes as well as providing a better convergence. Finally, we propose AMP and VAMP-EM turbo receivers for low-density parity-check (LDPC)-coded OTSM systems. It is demonstrated that our proposed VAMP-EM turbo receiver is capable of providing both BER and convergence performance improvements over the conventional AMP solution.

In this paper, we first indicate that the block error event of polar codes under successive cancellation list (SCL) decoding is composed of path loss (PL) error event and path selection (PS) error event, where the PL error event is that correct codeword is lost during the SCL decoding and the PS error event is that correct codeword is reserved in the decoded list but not selected as the decoded codeword. Then, we simplify the PL error event by assuming the all-zero codeword is transmitted and derive the probability lower bound via the joint probability density of the log-likelihood ratios of information bits. Meanwhile, the union bound calculated by the minimum weight distribution is used to evaluate the probability of the PS error event. With the performance analysis, we design a greedy bit-swapping (BS) algorithm to construct polar codes by gradually swapping information bit and frozen bit to reduce the performance lower bound of SCL decoding. The simulation results show that the BLER performance of SCL decoding is close to the lower bound in the medium to high signal-to-noise ratio region and we can optimize the lower bound to improve the BLER performance of SCL decoding by the BS algorithm.

We consider massive multiple-input multiple-output (MIMO) systems in the presence of Cauchy noise. First, we focus on the channel estimation problem. In the standard massive MIMO setup, the users transmit orthonormal pilots during the training phase and the received signal at the base station is projected onto each pilot. This processing is optimum when the noise is Gaussian. We show that this processing is not optimal when the noise is Cauchy and as a remedy propose a channel estimation technique that operates on the raw received signal. Second, we derive uplink-downlink achievable rates in the presence of Cauchy noise for perfect and imperfect channel state information. Finally, we derive log-likelihood ratio expressions for soft bit detection for both uplink and downlink, and simulate coded bit-error-rate curves. In addition to this, we derive and compare the symbol detectors in the presence of both Gaussian and Cauchy noises. An important observation is that the detector constructed for Cauchy noise performs well with both Gaussian and Cauchy noises; on the other hand, the detector for Gaussian noise works poorly in the presence of Cauchy noise. That is, the Cauchy detector is robust against heavy-tailed noise, whereas the Gaussian detector is not.

Infinite Gray code has been introduced by Tsuiki as a redundancy-free representation of the reals. In applications the signed digit representation is mostly used which has maximal redundancy. Tsuiki presented a functional program converting signed digit code into infinite Gray code. Moreover, he showed that infinite Gray code can effectively be converted into signed digit code, but the program needs to have some non-deterministic features (see also H. Tsuiki, K. Sugihara, "Streams with a bottom in functional languages"). Berger and Tsuiki reproved the result in a system of formal first-order intuitionistic logic extended by inductive and co-inductive definitions, as well as some new logical connectives capturing concurrent behaviour. The programs extracted from the proofs are exactly the ones given by Tsuiki. In order to do so, co-inductive predicates $\bS$ and $\bG$ are defined and the inclusion $\bS \subseteq \bG$ is derived. For the converse inclusion the new logical connectives are used to introduce a concurrent version $\S_{2}$ of $S$ and $\bG \subseteq \bS_{2}$ is shown. What one is looking for, however, is an equivalence proof of the involved concepts. One of the main aims of the present paper is to close the gap. A concurrent version $\bG^{*}$ of $\bG$ and a modification $\bS^{*}$ of $\bS_{2}$ are presented such that $\bS^{*} = \bG^{*}$. A crucial tool in U. Berger, H. Tsuiki, "Intuitionistic fixed point logic" is a formulation of the Archimedean property of the real numbers as an induction principle. We introduce a concurrent version of this principle which allows us to prove that $\bS^{*}$ and $\bG^{*}$ coincide. A further central contribution is the extension of the above results to the hyperspace of non-empty compact subsets of the reals.

This paper examines the approximation of log-determinant for large-scale symmetric positive definite matrices. Inspired by the variance reduction technique, we split the approximation of $\log\det(A)$ into two parts. The first to compute is the trace of the projection of $\log(A)$ onto a suboptimal subspace, while the second is the trace of the projection on the corresponding orthogonal complementary space. For these two approximations, the stochastic Lanczos quadrature method is used. Furthermore, in the construction of the suboptimal subspace, we utilize a projection-cost-preserving sketch to bound the size of the Gaussian random matrix and the dimension of the suboptimal subspace. We provide a rigorous error analysis for our proposed method and explicit lower bounds for its design parameters, offering guidance for practitioners. We conduct numerical experiments to demonstrate our method's effectiveness and illustrate the quality of the derived bounds.

Shannon's channel coding theorem characterizes the maximal rate of information that can be reliably transmitted over a communication channel when optimal encoding and decoding strategies are used. In many scenarios, however, practical considerations such as channel uncertainty and implementation constraints rule out the use of an optimal decoder. The mismatched decoding problem addresses such scenarios by considering the case that the decoder cannot be optimized, but is instead fixed as part of the problem statement. This problem is not only of direct interest in its own right, but also has close connections with other long-standing theoretical problems in information theory. In this monograph, we survey both classical literature and recent developments on the mismatched decoding problem, with an emphasis on achievable random-coding rates for memoryless channels. We present two widely-considered achievable rates known as the generalized mutual information (GMI) and the LM rate, and overview their derivations and properties. In addition, we survey several improved rates via multi-user coding techniques, as well as recent developments and challenges in establishing upper bounds on the mismatch capacity, and an analogous mismatched encoding problem in rate-distortion theory. Throughout the monograph, we highlight a variety of applications and connections with other prominent information theory problems.

A binary code of blocklength $n$ and codebook size $M$ is called an $(n,M)$ code, which is studied for memoryless binary symmetric channels (BSCs) with the maximum likelihood (ML) decoding. For any $n \geq 2$, some optimal codes among the linear $(n,4)$ codes have been explicitly characterized in the previous study, but whether the optimal codes among the linear codes are better than all the nonlinear codes or not is unknown. In this paper, we first show that for any $n\geq 2$, there exists an optimal code (among all the $(n,4)$ codes) that is either linear or in a subset of nonlinear codes, called Class-I codes. We identified all the optimal codes among the linear $(n,4)$ codes for each blocklength $n\geq 2$, and found ones that were not given in literature. For any $n$ from $2$ to $300$, all the optimal $(n,4)$ codes are identified, where except for $n=3$, all the optimal $(n,4)$ codes are equivalent to linear codes. There exist optimal $(3,4)$ codes that are not equivalent to linear codes. Furthermore, we derive a subset of nonlinear codes called Class-II codes and justify that for any $n >300$, the set composed of linear, Class-I and Class-II codes and their equivalent codes contains all the optimal $(n,4)$ codes. Both Class-I and Class-II codes are close to linear codes in the sense that they involve only one type of columns that are not included in linear codes. Our results are obtained using a new technique to compare the ML decoding performance of two codes, featured by a partition of the entire range of the channel output.

Over-the-air computation (AirComp), as a data aggregation method that can improve network efficiency by exploiting the superposition characteristics of wireless channels, has received much attention recently. Meanwhile, the orthogonal time frequency space (OTFS) modulation can provide a strong Doppler resilience and facilitates reliable transmission for high-mobility communications. Hence, in this work, we investigate an OTFS-based AirComp system in the presence of time-frequency dual-selective channels. In particular, we commence from the development of a novel transmission framework for the considered system, where the pilot signal is sent together with data and the channel estimation is implemented according to the echo from the access point to the sensor, thereby reducing the overhead of channel state information (CSI) feedback. Hereafter, based on the CSI estimated from the previous frame, a robust precoding matrix aiming at minimizing mean square error in the current frame is designed, which takes into account the estimation error from the receiver noise and the outdated CSI. The simulation results demonstrate the effectiveness of the proposed robust precoding scheme by comparing it with the non-robust precoding. The performance gain is more obvious in high signal-to-noise ratio in case of large channel estimation errors.

北京阿比特科技有限公司