亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent research has highlighted the potential of linking predictive and prescriptive analytics. However, it remains widely unexplored how both paradigms could benefit from one another to address today's major challenges in healthcare. One of these is smarter planning of resource capacities for frail and elderly inpatient wards, addressing the societal challenge of an aging population. Frail and elderly patients typically suffer from multimorbidity and require more care while receiving medical treatment. The aim of this research is to assess how various predictive and prescriptive analytical methods, both individually and in tandem, contribute to addressing the operational challenges within an area of healthcare that is growing in demand. Clinical and demographic patient attributes are gathered from more than 165,000 patient records and used to explain and predict length of stay. To that extent, we employ Classification and Regression Trees (CART) analysis to establish this relationship. On the prescriptive side, deterministic and two-stage stochastic programs are developed to determine how to optimally plan for beds and ward staff with the objective to minimize cost. Furthermore, the two analytical methodologies are linked by generating demand for the prescriptive models using the CART groupings. The results show the linked methodologies provided different but similar results compared to using averages and in doing so, captured a more realistic real-world variation in the patient length of stay. Our research reveals that healthcare managers should consider using predictive and prescriptive models to make more informed decisions. By combining predictive and prescriptive analytics, healthcare managers can move away from relying on averages and incorporate the unique characteristics of their patients to create more robust planning decisions, mitigating risks caused by variations in demand.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 通道 · MIMO · Integration · massive MIMO ·
2024 年 1 月 3 日

Benefitting from the vast spatial degrees of freedom, the amalgamation of integrated sensing and communication (ISAC) and massive multiple-input multiple-output (MIMO) is expected to simultaneously improve spectral and energy efficiencies as well as the sensing capability. However, a large number of antennas deployed in massive MIMO-ISAC raises critical challenges in acquiring both accurate channel state information and target parameter information. To overcome these two challenges with a unified framework, we first analyze their underlying system models and then propose a novel tensor-based approach that addresses both the channel estimation and target sensing problems. Specifically, by parameterizing the high-dimensional communication channel exploiting a small number of physical parameters, we associate the channel state information with the sensing parameters of targets in terms of angular, delay, and Doppler dimensions. Then, we propose a shared training pattern adopting the same time-frequency resources such that both the channel estimation and target parameter estimation can be formulated as a canonical polyadic decomposition problem with a similar mathematical expression. On this basis, we first investigate the uniqueness condition of the tensor factorization and the maximum number of resolvable targets by utilizing the specific Vandermonde

In many recent works, there is an increased focus on designing algorithms that seek flatter optima for neural network loss optimization as there is empirical evidence that it leads to better generalization performance in many datasets. In this work, we dissect these performance gains through the lens of data memorization in overparameterized models. We define a new metric that helps us identify which data points specifically do algorithms seeking flatter optima do better when compared to vanilla SGD. We find that the generalization gains achieved by Sharpness Aware Minimization (SAM) are particularly pronounced for atypical data points, which necessitate memorization. This insight helps us unearth higher privacy risks associated with SAM, which we verify through exhaustive empirical evaluations. Finally, we propose mitigation strategies to achieve a more desirable accuracy vs privacy tradeoff.

How scientists navigate between the need to capitalize on their prior knowledge by specializing, and the urge to adapt to evolving research opportunities? Drawing from diverse perspectives on adaptation, in particular from institutional change and cultural evolution, this paper proposes a Bayesian model of the evolution of scientists' research portfolios in response to transformations in their field. The model relies on scientific abstracts and authorship data to evaluate the influence of intellectual, social, and institutional resources on scientists' trajectories within a cohort of $2\,195$ high-energy physicists between 2000 and 2019. The reallocation of research efforts is shown to be structured by learning costs, thus enhancing the utility of the scientific capital disseminated among scientists. Two dimensions of social capital, namely ``diversity'' and ``power'', have opposite effects on the magnitude of change in scientists' research interests: while ``diversity'' disrupts and expands research interests, ``power'' stabilizes physicists' research agendas -- as does institutional stability. Social capital plays a more crucial role in shifts between cognitively distant research areas.

We address the choice of penalty parameter in the Smoothness-Penalized Deconvolution (SPeD) method of estimating a probability density under additive measurement error. Cross-validation gives an unbiased estimate of the risk (for the present sample size n) with a given penalty parameter, and this function can be minimized as a function of the penalty parameter. Least-squares cross-validation, which has been proposed for the similar Deconvoluting Kernel Density Estimator (DKDE), performs quite poorly for SPeD. We instead estimate the risk function for a smaller sample size n_1 < n with a given penalty parameter, using this to choose the penalty parameter for sample size n_1, and then use the asymptotics of the optimal penalty parameter to choose for sample size n. In a simulation study, we find that this has dramatically better performance than cross-validation, is an improvement over a SURE-type method previously proposed for this estimator, and compares favorably to the classic DKDE with its recommended plug-in method. We prove that the maximum error in estimating the risk function is of smaller order than its optimal rate of convergence.

The characteristics and interpretability of data become more abstract and complex as the dimensionality increases. Common patterns and relationships that hold in in low-dimensional space may fail to hold in higher-dimensional space. This phenomenon leads to a decreasing performance for the regression, classification or clustering models or algorithms, which is known as curse of dimensionality. Curse of dimensionality can be attributed to many causes. In this paper, we first summarize five challenges associated with manipulating high-dimensional data, and explains the potential causes for the failure of regression, classification or clustering tasks. Subsequently, we delve into two major causes of the curse of dimensionality, distance concentration and manifold effect, by performing theoretical and empirical analyses. The results demonstrate that nearest neighbor search (NNS) using three typical distance measurements, Minkowski distance, Chebyshev distance, and cosine distance, becomes meaningless as the dimensionality increases. Meanwhile, the data incorporates more redundant features, and the variance contribution of principal component analysis (PCA) is skewed towards a few dimensions. By interpreting the causes of the curse of dimensionality, we can better understand the limitations of current models and algorithms, and drive to improve the performance of data analysis and machine learning tasks in high-dimensional space.

Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司