亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Achieving precise, highly-dynamic maneuvers with Unmanned Aerial Vehicles (UAVs) is a major challenge due to the complexity of the associated aerodynamics. In particular, unsteady effects -- as might be experienced in post-stall regimes or during sudden vehicle morphing -- can have an adverse impact on the performance of modern flight control systems. In this paper, we present a vortex particle model and associated model-based controller capable of reasoning about the unsteady aerodynamics during aggressive maneuvers. We evaluate our approach in hardware on a morphing-wing UAV executing post-stall perching maneuvers. Our results show that the use of the unsteady aerodynamics model improves performance during both fixed-wing and dynamic-wing perching, while the use of wing-morphing planned with quasi-steady aerodynamics results in reduced performance. While the focus of this paper is a pre-computed control policy, we believe that, with sufficient computational resources, our approach could enable online planning in the future.

相關內容

Knowledge distillation (KD) emerges as a challenging yet promising technique for compressing deep learning models, characterized by the transmission of extensive learning representations from proficient and computationally intensive teacher models to compact student models. However, only a handful of studies have endeavored to compress the models for single image super-resolution (SISR) through KD, with their effects on student model enhancement remaining marginal. In this paper, we put forth an approach from the perspective of efficient data utilization, namely, the Data Upcycling Knowledge Distillation (DUKD) which facilitates the student model by the prior knowledge teacher provided via upcycled in-domain data derived from their inputs. This upcycling process is realized through two efficient image zooming operations and invertible data augmentations which introduce the label consistency regularization to the field of KD for SISR and substantially boosts student model's generalization. The DUKD, due to its versatility, can be applied across a broad spectrum of teacher-student architectures. Comprehensive experiments across diverse benchmarks demonstrate that our proposed DUKD method significantly outperforms previous art, exemplified by an increase of up to 0.5dB in PSNR over baselines methods, and a 67% parameters reduced RCAN model's performance remaining on par with that of the RCAN teacher model.

LARS and LAMB have emerged as prominent techniques in Large Batch Learning (LBL), ensuring the stability of AI training. One of the primary challenges in LBL is convergence stability, where the AI agent usually gets trapped into the sharp minimizer. Addressing this challenge, a relatively recent technique, known as warm-up, has been employed. However, warm-up lacks a strong theoretical foundation, leaving the door open for further exploration of more efficacious algorithms. In light of this situation, we conduct empirical experiments to analyze the behaviors of the two most popular optimizers in the LARS family: LARS and LAMB, with and without a warm-up strategy. Our analyses give us a comprehension of the novel LARS, LAMB, and the necessity of a warm-up technique in LBL. Building upon these insights, we propose a novel algorithm called Time Varying LARS (TVLARS), which facilitates robust training in the initial phase without the need for warm-up. Experimental evaluation demonstrates that TVLARS achieves competitive results with LARS and LAMB when warm-up is utilized while surpassing their performance without the warm-up technique.

As Large Language Models (LLMs) gain in popularity, it is important to understand how novice programmers use them. We present a thematic analysis of 33 learners, aged 10-17, independently learning Python through 45 code-authoring tasks using Codex, an LLM-based code generator. We explore several questions related to how learners used these code generators and provide an analysis of the properties of the written prompts and the generated code. Specifically, we explore (A) the context in which learners use Codex, (B) what learners are asking from Codex, (C) properties of their prompts in terms of relation to task description, language, and clarity, and prompt crafting patterns, (D) the correctness, complexity, and accuracy of the AI-generated code, and (E) how learners utilize AI-generated code in terms of placement, verification, and manual modifications. Furthermore, our analysis reveals four distinct coding approaches when writing code with an AI code generator: AI Single Prompt, where learners prompted Codex once to generate the entire solution to a task; AI Step-by-Step, where learners divided the problem into parts and used Codex to generate each part; Hybrid, where learners wrote some of the code themselves and used Codex to generate others; and Manual coding, where learners wrote the code themselves. The AI Single Prompt approach resulted in the highest correctness scores on code-authoring tasks, but the lowest correctness scores on subsequent code-modification tasks during training. Our results provide initial insight into how novice learners use AI code generators and the challenges and opportunities associated with integrating them into self-paced learning environments. We conclude with various signs of over-reliance and self-regulation, as well as opportunities for curriculum and tool development.

While AI shows promise for enhancing the efficiency of qualitative analysis, the unique human-AI interaction resulting from varied coding strategies makes it challenging to develop a trustworthy AI-assisted qualitative coding system (AIQCs) that supports coding tasks effectively. We bridge this gap by exploring the impact of varying coding strategies on user trust and reliance on AI. We conducted a mixed-methods split-plot 3x3 study, involving 30 participants, and a follow-up study with 6 participants, exploring varying text selection and code length in the use of our AIQCs system for qualitative analysis. Our results indicate that qualitative open coding should be conceptualized as a series of distinct subtasks, each with differing levels of complexity, and therefore, should be given tailored design considerations. We further observed a discrepancy between perceived and behavioral measures, and emphasized the potential challenges of under- and over-reliance on AIQCs systems. Additional design implications were also proposed for consideration.

A challenge in Multi-Robot Exploration (MRE) tasks is formulating efficient distributed exploration strategies since, in general, robots cannot communicate freely and the environment can be dynamic and unknown. Most solutions deliver good performance at the cost of adding more robots or network relays while exploring, which helps to connect the robots through time. This paper proposes a novel intermittent rendezvous method that allows robots to explore an unknown environment while sharing maps at rendezvous points without adding relays or other robots. We propose dynamically updating the rendezvous locations throughout the exploration and designing an exploration strategy that prioritizes future rendezvous. We generate our rendezvous strategies automatically by reducing the MRE to instances of the Job Shop Schedule Problem (JSSP) with temporal connectivity graphs. We evaluate our method in simulation in various virtual urban environments and in a Gazebo simulation using the Robot Operating System (ROS). Our results suggest that our method can be better than using relays or maintaining intermittent communication with a base station since we can explore faster without additional hardware to create a relay network.

Graph Neural Networks (GNNs) have achieved promising performance in a variety of graph-focused tasks. Despite their success, existing GNNs suffer from two significant limitations: a lack of interpretability in results due to their black-box nature, and an inability to learn representations of varying orders. To tackle these issues, we propose a novel Model-agnostic Graph Neural Network (MaGNet) framework, which is able to sequentially integrate information of various orders, extract knowledge from high-order neighbors, and provide meaningful and interpretable results by identifying influential compact graph structures. In particular, MaGNet consists of two components: an estimation model for the latent representation of complex relationships under graph topology, and an interpretation model that identifies influential nodes, edges, and important node features. Theoretically, we establish the generalization error bound for MaGNet via empirical Rademacher complexity, and showcase its power to represent layer-wise neighborhood mixing. We conduct comprehensive numerical studies using simulated data to demonstrate the superior performance of MaGNet in comparison to several state-of-the-art alternatives. Furthermore, we apply MaGNet to a real-world case study aimed at extracting task-critical information from brain activity data, thereby highlighting its effectiveness in advancing scientific research.

Recognizing human actions in video sequences, known as Human Action Recognition (HAR), is a challenging task in pattern recognition. While Convolutional Neural Networks (ConvNets) have shown remarkable success in image recognition, they are not always directly applicable to HAR, as temporal features are critical for accurate classification. In this paper, we propose a novel dynamic PSO-ConvNet model for learning actions in videos, building on our recent work in image recognition. Our approach leverages a framework where the weight vector of each neural network represents the position of a particle in phase space, and particles share their current weight vectors and gradient estimates of the Loss function. To extend our approach to video, we integrate ConvNets with state-of-the-art temporal methods such as Transformer and Recurrent Neural Networks. Our experimental results on the UCF-101 dataset demonstrate substantial improvements of up to 9% in accuracy, which confirms the effectiveness of our proposed method. In addition, we conducted experiments on larger and more variety of datasets including Kinetics-400 and HMDB-51 and obtained preference for Collaborative Learning in comparison with Non-Collaborative Learning (Individual Learning). Overall, our dynamic PSO-ConvNet model provides a promising direction for improving HAR by better capturing the spatio-temporal dynamics of human actions in videos. The code is available at //github.com/leonlha/Video-Action-Recognition-Collaborative-Learning-with-Dynamics-via-PSO-ConvNet-Transformer.

Human-Computer Interaction (HCI) has been the subject of research for many years, and recent studies have focused on improving its performance through various techniques. In the past decade, deep learning studies have shown high performance in various research areas, leading researchers to explore their application to HCI. Convolutional neural networks can be used to recognize hand gestures from images using deep architectures. In this study, we evaluated pre-trained high-performance deep architectures on the HG14 dataset, which consists of 14 different hand gesture classes. Among 22 different models, versions of the VGGNet and MobileNet models attained the highest accuracy rates. Specifically, the VGG16 and VGG19 models achieved accuracy rates of 94.64% and 94.36%, respectively, while the MobileNet and MobileNetV2 models achieved accuracy rates of 96.79% and 94.43%, respectively. We performed hand gesture recognition on the dataset using an ensemble learning technique, which combined the four most successful models. By utilizing these models as base learners and applying the Dirichlet ensemble technique, we achieved an accuracy rate of 98.88%. These results demonstrate the effectiveness of the deep ensemble learning technique for HCI and its potential applications in areas such as augmented reality, virtual reality, and game technologies.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.

北京阿比特科技有限公司