亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Identifying dependency in multivariate data is a common inference task that arises in numerous applications. However, existing nonparametric independence tests typically require computation that scales at least quadratically with the sample size, making it difficult to apply them to massive data. Moreover, resampling is usually necessary to evaluate the statistical significance of the resulting test statistics at finite sample sizes, further worsening the computational burden. We introduce a scalable, resampling-free approach to testing the independence between two random vectors by breaking down the task into simple univariate tests of independence on a collection of 2x2 contingency tables constructed through sequential coarse-to-fine discretization of the sample space, transforming the inference task into a multiple testing problem that can be completed with almost linear complexity with respect to the sample size. To address increasing dimensionality, we introduce a coarse-to-fine sequential adaptive procedure that exploits the spatial features of dependency structures to more effectively examine the sample space. We derive a finite-sample theory that guarantees the inferential validity of our adaptive procedure at any given sample size. In particular, we show that our approach can achieve strong control of the family-wise error rate without resampling or large-sample approximation. We demonstrate the substantial computational advantage of the procedure in comparison to existing approaches as well as its decent statistical power under various dependency scenarios through an extensive simulation study, and illustrate how the divide-and-conquer nature of the procedure can be exploited to not just test independence but to learn the nature of the underlying dependency. Finally, we demonstrate the use of our method through analyzing a large data set from a flow cytometry experiment.

相關內容

Recursively defined linked datastructures embedded in a pointer-based heap and their properties are naturally expressed in pure first-order logic with least fixpoint definitions (FO+lfp) combined with background theories. However, automated reasoning for such logics has not seen much progress. Such logics, unlike pure FOL, do not even admit complete procedures, let alone decidable ones. In this paper, we undertake a foundational study of automatically finding proofs that use induction to reason in these logics. By treating proofs as pure FO proofs that are punctuated by declarations of induction lemmas, we separate proofs into deductively reasoned components and statements of lemmas that need to be synthesized. While humans divine such lemmas with intuition, we propose a technique that guides the synthesis of such lemmas using counterexamples that are finite first-order models that witness the help required for proving a goal theorem as well as non-provability and invalidity of lemmas. We develop relatively complete procedures for synthesizing lemmas for powerful FO+lfp logics. We implement our procedures and evaluate them over a class of theorems involving heap datastructures that require inductive proofs.

The rapid finding of effective therapeutics requires the efficient use of available resources in clinical trials. The use of covariate adjustment can yield statistical estimates with improved precision, resulting in a reduction in the number of participants required to draw futility or efficacy conclusions. We focus on time-to-event and ordinal outcomes. A key question for covariate adjustment in randomized studies is how to fit a model relating the outcome and the baseline covariates to maximize precision. We present a novel theoretical result establishing conditions for asymptotic normality of a variety of covariate-adjusted estimators that rely on machine learning (e.g., l1-regularization, Random Forests, XGBoost, and Multivariate Adaptive Regression Splines), under the assumption that outcome data is missing completely at random. We further present a consistent estimator of the asymptotic variance. Importantly, the conditions do not require the machine learning methods to converge to the true outcome distribution conditional on baseline variables, as long as they converge to some (possibly incorrect) limit. We conducted a simulation study to evaluate the performance of the aforementioned prediction methods in COVID-19 trials using longitudinal data from over 1,500 patients hospitalized with COVID-19 at Weill Cornell Medicine New York Presbyterian Hospital. We found that using l1-regularization led to estimators and corresponding hypothesis tests that control type 1 error and are more precise than an unadjusted estimator across all sample sizes tested. We also show that when covariates are not prognostic of the outcome, l1-regularization remains as precise as the unadjusted estimator, even at small sample sizes (n = 100). We give an R package adjrct that performs model-robust covariate adjustment for ordinal and time-to-event outcomes.

We consider a sparse deep ReLU network (SDRN) estimator obtained from empirical risk minimization with a Lipschitz loss function in the presence of a large number of features. Our framework can be applied to a variety of regression and classification problems. The unknown target function to estimate is assumed to be in a Korobov space. Functions in this space only need to satisfy a smoothness condition rather than having a compositional structure. We develop non-asymptotic excess risk bounds for our SDRN estimator. We further derive that the SDRN estimator can achieve the same minimax rate of estimation (up to logarithmic factors) as one-dimensional nonparametric regression when the dimension of the features is fixed, and the estimator has a suboptimal rate when the dimension grows with the sample size. We show that the depth and the total number of nodes and weights of the ReLU network need to grow as the sample size increases to ensure a good performance, and also investigate how fast they should increase with the sample size. These results provide an important theoretical guidance and basis for empirical studies by deep neural networks.

Machine learning methods have greatly changed science, engineering, finance, business, and other fields. Despite the tremendous accomplishments of machine learning and deep learning methods, many challenges still remain. In particular, the performance of machine learning methods is often severely affected in case of diverse data, usually associated with smaller data sets or data related to areas of study where the size of the data sets is constrained by the complexity and/or high cost of experiments. Moreover, data with limited labeled samples is a challenge to most learning approaches. In this paper, the aforementioned challenges are addressed by integrating graph-based frameworks, multiscale structure, modified and adapted optimization procedures and semi-supervised techniques. This results in two innovative multiscale Laplacian learning (MLL) approaches for machine learning tasks, such as data classification, and for tackling diverse data, data with limited samples and smaller data sets. The first approach, called multikernel manifold learning (MML), integrates manifold learning with multikernel information and solves a regularization problem consisting of a loss function and a warped kernel regularizer using multiscale graph Laplacians. The second approach, called the multiscale MBO (MMBO) method, introduces multiscale Laplacians to a modification of the famous classical Merriman-Bence-Osher (MBO) scheme, and makes use of fast solvers for finding the approximations to the extremal eigenvectors of the graph Laplacian. We demonstrate the performance of our methods experimentally on a variety of data sets, such as biological, text and image data, and compare them favorably to existing approaches.

The problem of constructing a simultaneous confidence band for the mean function of a locally stationary functional time series $ \{ X_{i,n} (t) \}_{i = 1, \ldots, n}$ is challenging as these bands can not be built on classical limit theory. On the one hand, for a fixed argument $t$ of the functions $ X_{i,n}$, the maximum absolute deviation between an estimate and the time dependent regression function exhibits (after appropriate standardization) an extreme value behaviour with a Gumbel distribution in the limit. On the other hand, for stationary functional data, simultaneous confidence bands can be built on classical central theorems for Banach space valued random variables and the limit distribution of the maximum absolute deviation is given by the sup-norm of a Gaussian process. As both limit theorems have different rates of convergence, they are not compatible, and a weak convergence result, which could be used for the construction of a confidence surface in the locally stationary case, does not exist. In this paper we propose new bootstrap methodology to construct a simultaneous confidence band for the mean function of a locally stationary functional time series, which is motivated by a Gaussian approximation for the maximum absolute deviation. We prove the validity of our approach by asymptotic theory, demonstrate good finite sample properties by means of a simulation study and illustrate its applicability analyzing a data example.

We introduce a new method analyzing the cumulative sum (CUSUM) procedure in sequential change-point detection. When observations are phase-type distributed and the post-change distribution is given by exponential tilting of its pre-change distribution, the first passage analysis of the CUSUM statistic is reduced to that of a certain Markov additive process. By using the theory of the so-called scale matrix and further developing it, we derive exact expressions of the average run length, average detection delay, and false alarm probability under the CUSUM procedure. The proposed method is robust and applicable in a general setting with non-i.i.d. observations. Numerical results also are given.

Structured epidemic models can be formulated as first-order hyperbolic PDEs, where the "spatial" variables represent individual traits, called structures. For models with two structures, we propose a numerical technique to approximate $R_{0}$, which measures the transmissibility of an infectious disease and, rigorously, is defined as the dominant eigenvalue of a next-generation operator. Via bivariate collocation and cubature on tensor grids, the latter is approximated with a finite-dimensional matrix, so that its dominant eigenvalue can easily be computed with standard techniques. We use test examples to investigate experimentally the behavior of the approximation: the convergence order appears to be infinite when the corresponding eigenfunction is smooth, and finite for less regular eigenfunctions. To demonstrate the effectiveness of the technique for more realistic applications, we present a new epidemic model structured by demographic age and immunity, and study the approximation of $R_{0}$ in some particular cases of interest.

In this paper, we explore adaptive inference based on variational Bayes. Although a number of studies have been conducted to analyze contraction properties of variational posteriors, there is still a lack of a general and computationally tractable variational Bayes method that can achieve adaptive optimal contraction of the variational posterior. We propose a novel variational Bayes framework, called adaptive variational Bayes, which can operate on a collection of models with varying dimensions and structures. The proposed framework combines variational posteriors over individual models with certain weights to obtain a variational posterior over the entire model. It turns out that this combined variational posterior minimizes the Kullback-Leibler divergence to the original posterior distribution. We show that the proposed variational posterior achieves optimal contraction rates adaptively under very general conditions and attains model selection consistency when the true model structure exists. We apply the general results obtained for the adaptive variational Bayes to several examples including deep learning models and derive some new and adaptive inference results. Moreover, we consider the use of quasi-likelihood in our framework. We formulate conditions on the quasi-likelihood to ensure the adaptive optimality and discuss specific applications to stochastic block models and nonparametric regression with sub-Gaussian errors.

We present a methodology based on filtered data and moving averages for estimating robustly effective dynamics from observations of multiscale systems. We show in a semi-parametric framework of the Langevin type that the method we propose is asymptotically unbiased with respect to homogenization theory. Moreover, we demonstrate with a series of numerical experiments that the method we propose here outperforms traditional techniques for extracting coarse-grained dynamics from data, such as subsampling, in terms of bias and of robustness.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司