亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the weighted load balancing problem, the input is an $n$-vertex bipartite graph between a set of clients and a set of servers, and each client comes with some nonnegative real weight. The output is an assignment that maps each client to one of its adjacent servers, and the load of a server is then the sum of the weights of the clients assigned to it. The goal is to find an assignment that is well-balanced, typically captured by (approximately) minimizing either the $\ell_\infty$- or $\ell_2$-norm of the server loads. Generalizing both of these objectives, the all-norm load balancing problem asks for an assignment that approximately minimizes all $\ell_p$-norm objectives for $p \ge 1$, including $p = \infty$, simultaneously. Our main result is a deterministic $O(\log{n})$-pass $O(1)$-approximation semi-streaming algorithm for the all-norm load balancing problem. Prior to our work, only an $O(\log{n})$-pass $O(\log{n})$-approximation algorithm for the $\ell_\infty$-norm objective was known in the semi-streaming setting. Our algorithm uses a novel application of the multiplicative weights update method to a mixed covering/packing convex program for the all-norm load balancing problem involving an infinite number of constraints.

相關內容

We present generalized balancing weights, Neural Balancing Weights (NBW), to estimate the causal effects for an arbitrary mixture of discrete and continuous interventions. The weights were obtained by directly estimating the density ratio between the source and balanced distributions by optimizing the variational representation of $f$-divergence. For this, we selected $\alpha$-divergence since it has good properties for optimization: It has an estimator whose sample complexity is independent of it's ground truth value and unbiased mini-batch gradients and is advantageous for the vanishing gradient problem. In addition, we provide a method for checking the balance of the distribution changed by the weights. If the balancing is imperfect, the weights can be improved by adding new balancing weights. Our method can be conveniently implemented with any present deep-learning libraries, and weights can be used in most state-of-the-art supervised algorithms. The code for our method is available online.

Few-Shot Class Incremental Learning (FSCIL) is a challenging continual learning task, where limited training examples are available during several learning sessions. To succeed in this task, it is necessary to avoid over-fitting new classes caused by biased distributions in the few-shot training sets. The general approach to address this issue involves enhancing the representational capability of a pre-defined backbone architecture by adding special modules for backward compatibility with older classes. However, this approach has not yet solved the dilemma of ensuring high classification accuracy over time while reducing the gap between the performance obtained on larger training sets and the smaller ones. In this work, we propose an alternative approach called Continual Parameter-Efficient CLIP (CPE-CLIP) to reduce the loss of information between different learning sessions. Instead of adapting additional modules to address information loss, we leverage the vast knowledge acquired by CLIP in large-scale pre-training and its effectiveness in generalizing to new concepts. Our approach is multimodal and parameter-efficient, relying on learnable prompts for both the language and vision encoders to enable transfer learning across sessions. We also introduce prompt regularization to improve performance and prevent forgetting. Our experimental results demonstrate that CPE-CLIP significantly improves FSCIL performance compared to state-of-the-art proposals while also drastically reducing the number of learnable parameters and training costs.

This paper studies the consistency and statistical inference of simulated Markov random fields (MRFs) in a high dimensional background. Our estimators are based on the Markov chain Monte Carlo maximum likelihood estimation (MCMC-MLE) method, penalized by the Elastic-net. Under mild conditions that ensure a specific convergence rate of the MCMC method, the $\ell_{1}$ consistency of Elastic-net-penalized MCMC-MLE is obtained. We further propose a decorrelated score test based on the decorrelated score function and prove the asymptotic normality of the score function without the influence of many nuisance parameters under the assumption that it accelerates the convergence of the MCMC method. The one-step estimator for a single parameter of interest is constructed by linearizing the decorrelated score function to solve its root, and the normality and confidence interval for the true value, is established. We use different algorithms to control the false discovery rate (FDR) for multiple testing problems via classic p-values and novel e-values. Finally, we empirically validate the asymptotic theories and demonstrate both FDR control procedures in our article have good performance.

Bilevel optimization is a popular two-level hierarchical optimization, which has been widely applied to many machine learning tasks such as hyperparameter learning, meta learning and continual learning. Although many bilevel optimization methods recently have been developed, the bilevel methods are not well studied when the lower-level problem is nonconvex. To fill this gap, in the paper, we study a class of nonconvex bilevel optimization problems, which both upper-level and lower-level problems are nonconvex, and the lower-level problem satisfies Polyak-Lojasiewicz (PL) condition. We propose an efficient momentum-based gradient bilevel method (MGBiO) to solve these deterministic problems. Meanwhile, we propose a class of efficient momentum-based stochastic gradient bilevel methods (MSGBiO and VR-MSGBiO) to solve these stochastic problems. Moreover, we provide a useful convergence analysis framework for our methods. Specifically, under some mild conditions, we prove that our MGBiO method has a sample (or gradient) complexity of $O(\epsilon^{-2})$ for finding an $\epsilon$-stationary solution of the deterministic bilevel problems (i.e., $\|\nabla F(x)\|\leq \epsilon$), which improves the existing best results by a factor of $O(\epsilon^{-1})$. Meanwhile, we prove that our MSGBiO and VR-MSGBiO methods have sample complexities of $\tilde{O}(\epsilon^{-4})$ and $\tilde{O}(\epsilon^{-3})$, respectively, in finding an $\epsilon$-stationary solution of the stochastic bilevel problems (i.e., $\mathbb{E}\|\nabla F(x)\|\leq \epsilon$), which improves the existing best results by a factor of $O(\epsilon^{-3})$. This manuscript commemorates the mathematician Boris Polyak (1935 -2023).

It is well-known that the standard level set advection equation does not preserve the signed distance property, which is a desirable property for the level set function representing a moving interface. Therefore, reinitialization or redistancing methods are frequently applied to restore the signed distance property while keeping the zero-contour fixed. As an alternative approach to these methods, we introduce a modified level set advection equation that intrinsically preserves the norm of the gradient at the interface, i.e. the local signed distance property. Mathematically, this is achieved by introducing a carefully chosen source term being proportional to the local rate of interfacial area generation. The introduction of the source term turns the problem into a non-linear one. However, we show that by discretizing the source term explicitly in time, it is sufficient to solve a linear equation in each time step. Notably, without further adjustment, the method works in the case of a moving contact line. This is a major advantage since redistancing is known to be an issue when contact lines are involved. We provide a first implementation of the method in a simple first-order upwind scheme in both two and three spatial dimensions.

Gradient Balancing (GraB) is a recently proposed technique that finds provably better data permutations when training models with multiple epochs over a finite dataset. It converges at a faster rate than the widely adopted Random Reshuffling, by minimizing the discrepancy of the gradients on adjacently selected examples. However, GraB only operates under critical assumptions such as small batch sizes and centralized data, leaving open the question of how to order examples at large scale -- i.e. distributed learning with decentralized data. To alleviate the limitation, in this paper we propose D-GraB, an algorithm that orders the examples in a parallel setting with negligible overhead, which enjoys linear speed up at rate $\tilde{O}((mnT)^{-2/3})$ on smooth non-convex objectives and $\tilde{O}((mnT)^{-2})$ under PL condition, where $n$ denotes the number of parallel workers, $m$ denotes the number of examples per worker and $T$ denotes the number of epochs. D-GraB benefits from both data ordering and parallelism. Empirically, we show on various applications including GLUE, CIFAR10 and WikiText-2 that D-GraB outperforms naive parallel GraB and Distributed Random Reshuffling in terms of both training and validation performance.

Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.

The Q-learning algorithm is known to be affected by the maximization bias, i.e. the systematic overestimation of action values, an important issue that has recently received renewed attention. Double Q-learning has been proposed as an efficient algorithm to mitigate this bias. However, this comes at the price of an underestimation of action values, in addition to increased memory requirements and a slower convergence. In this paper, we introduce a new way to address the maximization bias in the form of a "self-correcting algorithm" for approximating the maximum of an expected value. Our method balances the overestimation of the single estimator used in conventional Q-learning and the underestimation of the double estimator used in Double Q-learning. Applying this strategy to Q-learning results in Self-correcting Q-learning. We show theoretically that this new algorithm enjoys the same convergence guarantees as Q-learning while being more accurate. Empirically, it performs better than Double Q-learning in domains with rewards of high variance, and it even attains faster convergence than Q-learning in domains with rewards of zero or low variance. These advantages transfer to a Deep Q Network implementation that we call Self-correcting DQN and which outperforms regular DQN and Double DQN on several tasks in the Atari 2600 domain.

For deploying a deep learning model into production, it needs to be both accurate and compact to meet the latency and memory constraints. This usually results in a network that is deep (to ensure performance) and yet thin (to improve computational efficiency). In this paper, we propose an efficient method to train a deep thin network with a theoretic guarantee. Our method is motivated by model compression. It consists of three stages. In the first stage, we sufficiently widen the deep thin network and train it until convergence. In the second stage, we use this well-trained deep wide network to warm up (or initialize) the original deep thin network. This is achieved by letting the thin network imitate the immediate outputs of the wide network from layer to layer. In the last stage, we further fine tune this well initialized deep thin network. The theoretical guarantee is established by using mean field analysis, which shows the advantage of layerwise imitation over traditional training deep thin networks from scratch by backpropagation. We also conduct large-scale empirical experiments to validate our approach. By training with our method, ResNet50 can outperform ResNet101, and BERT_BASE can be comparable with BERT_LARGE, where both the latter models are trained via the standard training procedures as in the literature.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司