亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study conducts a thorough examination of malware detection using machine learning techniques, focusing on the evaluation of various classification models using the Mal-API-2019 dataset. The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively. Both ensemble and non-ensemble machine learning methods, such as Random Forest, XGBoost, K Nearest Neighbor (KNN), and Neural Networks, are explored. Special emphasis is placed on the importance of data pre-processing techniques, particularly TF-IDF representation and Principal Component Analysis, in improving model performance. Results indicate that ensemble methods, particularly Random Forest and XGBoost, exhibit superior accuracy, precision, and recall compared to others, highlighting their effectiveness in malware detection. The paper also discusses limitations and potential future directions, emphasizing the need for continuous adaptation to address the evolving nature of malware. This research contributes to ongoing discussions in cybersecurity and provides practical insights for developing more robust malware detection systems in the digital era.

相關內容

機器(qi)學(xue)習(xi)(xi)(xi)(Machine Learning)是一個研(yan)(yan)(yan)究(jiu)(jiu)計(ji)算(suan)學(xue)習(xi)(xi)(xi)方(fang)(fang)法(fa)(fa)的(de)(de)(de)(de)(de)(de)(de)國際論(lun)(lun)壇。該雜志發表文(wen)章,報(bao)告廣泛的(de)(de)(de)(de)(de)(de)(de)學(xue)習(xi)(xi)(xi)方(fang)(fang)法(fa)(fa)應(ying)用(yong)于(yu)各種學(xue)習(xi)(xi)(xi)問題(ti)的(de)(de)(de)(de)(de)(de)(de)實(shi)(shi)質性(xing)結果(guo)。該雜志的(de)(de)(de)(de)(de)(de)(de)特色(se)論(lun)(lun)文(wen)描述研(yan)(yan)(yan)究(jiu)(jiu)的(de)(de)(de)(de)(de)(de)(de)問題(ti)和(he)方(fang)(fang)法(fa)(fa),應(ying)用(yong)研(yan)(yan)(yan)究(jiu)(jiu)和(he)研(yan)(yan)(yan)究(jiu)(jiu)方(fang)(fang)法(fa)(fa)的(de)(de)(de)(de)(de)(de)(de)問題(ti)。有關(guan)學(xue)習(xi)(xi)(xi)問題(ti)或方(fang)(fang)法(fa)(fa)的(de)(de)(de)(de)(de)(de)(de)論(lun)(lun)文(wen)通(tong)過實(shi)(shi)證研(yan)(yan)(yan)究(jiu)(jiu)、理論(lun)(lun)分析或與心理現象的(de)(de)(de)(de)(de)(de)(de)比較提供了堅實(shi)(shi)的(de)(de)(de)(de)(de)(de)(de)支(zhi)持。應(ying)用(yong)論(lun)(lun)文(wen)展示了如何(he)應(ying)用(yong)學(xue)習(xi)(xi)(xi)方(fang)(fang)法(fa)(fa)來解決重要的(de)(de)(de)(de)(de)(de)(de)應(ying)用(yong)問題(ti)。研(yan)(yan)(yan)究(jiu)(jiu)方(fang)(fang)法(fa)(fa)論(lun)(lun)文(wen)改進了機器(qi)學(xue)習(xi)(xi)(xi)的(de)(de)(de)(de)(de)(de)(de)研(yan)(yan)(yan)究(jiu)(jiu)方(fang)(fang)法(fa)(fa)。所有的(de)(de)(de)(de)(de)(de)(de)論(lun)(lun)文(wen)都以其(qi)他研(yan)(yan)(yan)究(jiu)(jiu)人員可以驗證或復制(zhi)的(de)(de)(de)(de)(de)(de)(de)方(fang)(fang)式描述了支(zhi)持證據。論(lun)(lun)文(wen)還詳細說明了學(xue)習(xi)(xi)(xi)的(de)(de)(de)(de)(de)(de)(de)組成(cheng)部分,并討(tao)論(lun)(lun)了關(guan)于(yu)知識(shi)表示和(he)性(xing)能任務的(de)(de)(de)(de)(de)(de)(de)假設(she)。 官網地址:

The rise of machine learning has fueled the discovery of new materials and, especially, metamaterials--truss lattices being their most prominent class. While their tailorable properties have been explored extensively, the design of truss-based metamaterials has remained highly limited and often heuristic, due to the vast, discrete design space and the lack of a comprehensive parameterization. We here present a graph-based deep learning generative framework, which combines a variational autoencoder and a property predictor, to construct a reduced, continuous latent representation covering an enormous range of trusses. This unified latent space allows for the fast generation of new designs through simple operations (e.g., traversing the latent space or interpolating between structures). We further demonstrate an optimization framework for the inverse design of trusses with customized mechanical properties in both the linear and nonlinear regimes, including designs exhibiting exceptionally stiff, auxetic, pentamode-like, and tailored nonlinear behaviors. This generative model can predict manufacturable (and counter-intuitive) designs with extreme target properties beyond the training domain.

Architected materials with their unique topology and geometry offer the potential to modify physical and mechanical properties. Machine learning can accelerate the design and optimization of these materials by identifying optimal designs and forecasting performance. This work presents LatticeML, a data-driven application for predicting the effective Young's Modulus of high-temperature graph-based architected materials. The study considers eleven graph-based lattice structures with two high-temperature alloys, Ti-6Al-4V and Inconel 625. Finite element simulations were used to compute the effective Young's Modulus of the 2x2x2 unit cell configurations. A machine learning framework was developed to predict Young's Modulus, involving data collection, preprocessing, implementation of regression models, and deployment of the best-performing model. Five supervised learning algorithms were evaluated, with the XGBoost Regressor achieving the highest accuracy (MSE = 2.7993, MAE = 1.1521, R-squared = 0.9875). The application uses the Streamlit framework to create an interactive web interface, allowing users to input material and geometric parameters and obtain predicted Young's Modulus values.

We present a fast generative modeling approach for resistive memories that reproduces the complex statistical properties of real-world devices. To enable efficient modeling of analog circuits, the model is implemented in Verilog-A. By training on extensive measurement data of integrated 1T1R arrays (6,000 cycles of 512 devices), an autoregressive stochastic process accurately accounts for the cross-correlations between the switching parameters, while non-linear transformations ensure agreement with both cycle-to-cycle (C2C) and device-to-device (D2D) variability. Benchmarks show that this statistically comprehensive model achieves read/write throughputs exceeding those of even highly simplified and deterministic compact models.

In federated learning, data heterogeneity is a critical challenge. A straightforward solution is to shuffle the clients' data to homogenize the distribution. However, this may violate data access rights, and how and when shuffling can accelerate the convergence of a federated optimization algorithm is not theoretically well understood. In this paper, we establish a precise and quantifiable correspondence between data heterogeneity and parameters in the convergence rate when a fraction of data is shuffled across clients. We prove that shuffling can quadratically reduce the gradient dissimilarity with respect to the shuffling percentage, accelerating convergence. Inspired by the theory, we propose a practical approach that addresses the data access rights issue by shuffling locally generated synthetic data. The experimental results show that shuffling synthetic data improves the performance of multiple existing federated learning algorithms by a large margin.

The covXtreme software provides functionality for estimation of marginal and conditional extreme value models, non-stationary with respect to covariates, and environmental design contours. Generalised Pareto (GP) marginal models of peaks over threshold are estimated, using a piecewise-constant representation for the variation of GP threshold and scale parameters on the (potentially multidimensional) covariate domain of interest. The conditional variation of one or more associated variates, given a large value of a single conditioning variate, is described using the conditional extremes model of Heffernan and Tawn (2004), the slope term of which is also assumed to vary in a piecewise constant manner with covariates. Optimal smoothness of marginal and conditional extreme value model parameters with respect to covariates is estimated using cross-validated roughness-penalised maximum likelihood estimation. Uncertainties in model parameter estimates due to marginal and conditional extreme value threshold choice, and sample size, are quantified using a bootstrap resampling scheme. Estimates of environmental contours using various schemes, including the direct sampling approach of Huseby et al. 2013, are calculated by simulation or numerical integration under fitted models. The software was developed in MATLAB for metocean applications, but is applicable generally to multivariate samples of peaks over threshold. The software and case study data can be downloaded from GitHub, with an accompanying user guide.

Bilevel optimization, with broad applications in machine learning, has an intricate hierarchical structure. Gradient-based methods have emerged as a common approach to large-scale bilevel problems. However, the computation of the hyper-gradient, which involves a Hessian inverse vector product, confines the efficiency and is regarded as a bottleneck. To circumvent the inverse, we construct a sequence of low-dimensional approximate Krylov subspaces with the aid of the Lanczos process. As a result, the constructed subspace is able to dynamically and incrementally approximate the Hessian inverse vector product with less effort and thus leads to a favorable estimate of the hyper-gradient. Moreover, we propose a~provable subspace-based framework for bilevel problems where one central step is to solve a small-size tridiagonal linear system. To the best of our knowledge, this is the first time that subspace techniques are incorporated into bilevel optimization. This successful trial not only enjoys $\mathcal{O}(\epsilon^{-1})$ convergence rate but also demonstrates efficiency in a synthetic problem and two deep learning tasks.

We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.

Progress in the realm of quantum technologies is paving the way for a multitude of potential applications across different sectors. However, the reduced number of available quantum computers, their technical limitations and the high demand for their use are posing some problems for developers and researchers. Mainly, users trying to execute quantum circuits on these devices are usually facing long waiting times in the tasks queues. In this context, this work propose a technique to reduce waiting times and optimize quantum computers usage by scheduling circuits from different users into combined circuits that are executed at the same time. To validate this proposal, different widely known quantum algorithms have been selected and executed in combined circuits. The obtained results are then compared with the results of executing the same algorithms in an isolated way. This allowed us to measure the impact of the use of the scheduler. Among the obtained results, it has been possible to verify that the noise suffered by executing a combination of circuits through the proposed scheduler does not critically affect the outcomes.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司