Federated Learning (FL) provides a privacy-preserving framework for training machine learning models on mobile edge devices. Traditional FL algorithms, e.g., FedAvg, impose a heavy communication workload on these devices. To mitigate this issue, Hierarchical Federated Edge Learning (HFEL) has been proposed, leveraging edge servers as intermediaries for model aggregation. Despite its effectiveness, HFEL encounters challenges such as a slow convergence rate and high resource consumption, particularly in the presence of system and data heterogeneity. However, existing works are mainly focused on improving training efficiency for traditional FL, leaving the efficiency of HFEL largely unexplored. In this paper, we consider a two-tier HFEL system, where edge devices are connected to edge servers and edge servers are interconnected through peer-to-peer (P2P) edge backhauls. Our goal is to enhance the training efficiency of the HFEL system through strategic resource allocation and topology design. Specifically, we formulate an optimization problem to minimize the total training latency by allocating the computation and communication resources, as well as adjusting the P2P connections. To ensure convergence under dynamic topologies, we analyze the convergence error bound and introduce a model consensus constraint into the optimization problem. The proposed problem is then decomposed into several subproblems, enabling us to alternatively solve it online. Our method facilitates the efficient implementation of large-scale FL at edge networks under data and system heterogeneity. Comprehensive experiment evaluation on benchmark datasets validates the effectiveness of the proposed method, demonstrating significant reductions in training latency while maintaining the model accuracy compared to various baselines.
Android apps rely on application programming interfaces (APIs) to access various functionalities of Android devices. These APIs however are regularly updated to incorporate new features while the old APIs get deprecated. Even though the importance of updating deprecated API usages with the recommended replacement APIs has been widely recognized, it is non-trivial to update the deprecated API usages. Therefore, the usages of deprecated APIs linger in Android apps and cause compatibility issues in practice. This paper introduces GUPPY, an automated approach that utilizes large language models (LLMs) to update Android deprecated API usages. By employing carefully crafted prompts, GUPPY leverages GPT-4, one of the most powerful LLMs, to update deprecated-API usages, ensuring compatibility in both the old and new API levels. Additionally, GUPPY uses GPT-4 to generate tests, identify incorrect updates, and refine the API usage through an iterative process until the tests pass or a specified limit is reached. Our evaluation, conducted on 360 benchmark API usages from 20 deprecated APIs and an additional 156 deprecated API usages from the latest API levels 33 and 34, demonstrates GUPPY's advantages over the state-of-the-art techniques.
As Open Radio Access Networks (O-RAN) continue to expand, AI-driven applications (xApps) are increasingly being deployed enhance network management. However, developing xApps without formal verification risks introducing logical inconsistencies, particularly in balancing energy efficiency and service availability. In this paper, we argue that prior to their development, the formal analysis of xApp models should be a critical early step in the O-RAN design process. Using the PRISM model checker, we demonstrate how our results provide realistic insights into the thresholds between energy efficiency and service availability. While our models are simplified, the findings highlight how AI-informed decisions can enable more effective cell-switching policies. We position formal verification as an essential practice for future xApp development, avoiding fallacies in real-world applications and ensuring networks operate efficiently.
Transformer-based large language models (LLMs) have displayed remarkable creative prowess and emergence capabilities. Existing empirical studies have revealed a strong connection between these LLMs' impressive emergence abilities and their in-context learning (ICL) capacity, allowing them to solve new tasks using only task-specific prompts without further fine-tuning. On the other hand, existing empirical and theoretical studies also show that there is a linear regularity of the multi-concept encoded semantic representation behind transformer-based LLMs. However, existing theoretical work fail to build up an understanding of the connection between this regularity and the innovative power of ICL. Additionally, prior work often focuses on simplified, unrealistic scenarios involving linear transformers or unrealistic loss functions, and they achieve only linear or sub-linear convergence rates. In contrast, this work provides a fine-grained mathematical analysis to show how transformers leverage the multi-concept semantics of words to enable powerful ICL and excellent out-of-distribution ICL abilities, offering insights into how transformers innovate solutions for certain unseen tasks encoded with multiple cross-concept semantics. Inspired by empirical studies on the linear latent geometry of LLMs, the analysis is based on a concept-based low-noise sparse coding prompt model. Leveraging advanced techniques, this work showcases the exponential 0-1 loss convergence over the highly non-convex training dynamics, which pioneeringly incorporates the challenges of softmax self-attention, ReLU-activated MLPs, and cross-entropy loss. Empirical simulations corroborate the theoretical findings.
Large Language Models (LLMs) have demonstrated remarkable skills across various design domains, including UI generation. However, current LLMs for UI generation tend to offer generic solutions that lack a deep understanding of task context and user preferences in specific scenarios. We present \textit{CrowdGenUI}, a framework that enhances LLM-driven UI generation with a crowdsourced user preference library. This approach addresses the limitations of existing methods by guiding LLM reasoning with user preferences, enabling the generation of UI widgets that align more closely with user needs and task-specific requirements. Using image editing as a test domain, we built this library from 50 users, capturing 720 user preferences, which include the predictability, efficiency, and explorability of multiple UI widgets. In a user study with 72 additional participants, our framework outperformed standard LLM-generated widgets in meeting user preferences and task requirements. We discuss these findings to inform future opportunities for designing user-centered and customizable UIs by comprehensively analyzing the extendability of the proposed framework and crowdsourced library.
Large Language Models (LLMs) have been applied to various hardware design tasks, including Verilog code generation, EDA tool scripting, and RTL bug fixing. Despite this extensive exploration, LLMs are yet to be used for the task of post-synthesis metric reasoning and estimation of HDL designs. In this paper, we assess the ability of LLMs to reason about post-synthesis metrics of Verilog designs. We introduce MetRex, a large-scale dataset comprising 25,868 Verilog HDL designs and their corresponding post-synthesis metrics, namely area, delay, and static power. MetRex incorporates a Chain of Thought (CoT) template to enhance LLMs' reasoning about these metrics. Extensive experiments show that Supervised Fine-Tuning (SFT) boosts the LLM's reasoning capabilities on average by 37.0\%, 25.3\%, and 25.7\% on the area, delay, and static power, respectively. While SFT improves performance on our benchmark, it remains far from achieving optimal results, especially on complex problems. Comparing to state-of-the-art regression models, our approach delivers accurate post-synthesis predictions for 17.4\% more designs (within a 5\% error margin), in addition to offering a 1.7x speedup by eliminating the need for pre-processing. This work lays the groundwork for advancing LLM-based Verilog code metric reasoning.
Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includes encyclopedic documents that harbor a vast amount of general knowledge (e.g., Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (e.g., a news article) absent from the internet; (2) a question about the document's topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: //huggingface.co/datasets/ServiceNow/repliqa.
Natural Language Interfaces for Databases empower non-technical users to interact with data using natural language (NL). Advanced approaches, utilizing either neural sequence-to-sequence or more recent sophisticated large-scale language models, typically implement NL to SQL (NL2SQL) translation in an end-to-end fashion. However, like humans, these end-to-end translation models may not always generate the best SQL output on their first try. In this paper, we propose CycleSQL, an iterative framework designed for end-to-end translation models to autonomously generate the best output through self-evaluation. The main idea of CycleSQL is to introduce data-grounded NL explanations of query results as self-provided feedback, and use the feedback to validate the correctness of the translation iteratively, hence improving the overall translation accuracy. Extensive experiments, including quantitative and qualitative evaluations, are conducted to study CycleSQL by applying it to seven existing translation models on five widely used benchmarks. The results show that 1) the feedback loop introduced in CycleSQL can consistently improve the performance of existing models, and in particular, by applying CycleSQL to RESDSQL, obtains a translation accuracy of 82.0% (+2.6%) on the validation set, and 81.6% (+3.2%) on the test set of Spider benchmark; 2) the generated NL explanations can also provide insightful information for users, aiding in the comprehension of translation results and consequently enhancing the interpretability of NL2SQL translation.
Self-supervised learning (SSL) offers a powerful way to learn robust, generalizable representations without labeled data. In music, where labeled data is scarce, existing SSL methods typically use generated supervision and multi-view redundancy to create pretext tasks. However, these approaches often produce entangled representations and lose view-specific information. We propose a novel self-supervised multi-view learning framework for audio designed to incentivize separation between private and shared representation spaces. A case study on audio disentanglement in a controlled setting demonstrates the effectiveness of our method.
We introduce Vocal Sandbox, a framework for enabling seamless human-robot collaboration in situated environments. Systems in our framework are characterized by their ability to adapt and continually learn at multiple levels of abstraction from diverse teaching modalities such as spoken dialogue, object keypoints, and kinesthetic demonstrations. To enable such adaptation, we design lightweight and interpretable learning algorithms that allow users to build an understanding and co-adapt to a robot's capabilities in real-time, as they teach new behaviors. For example, after demonstrating a new low-level skill for "tracking around" an object, users are provided with trajectory visualizations of the robot's intended motion when asked to track a new object. Similarly, users teach high-level planning behaviors through spoken dialogue, using pretrained language models to synthesize behaviors such as "packing an object away" as compositions of low-level skills $-$ concepts that can be reused and built upon. We evaluate Vocal Sandbox in two settings: collaborative gift bag assembly and LEGO stop-motion animation. In the first setting, we run systematic ablations and user studies with 8 non-expert participants, highlighting the impact of multi-level teaching. Across 23 hours of total robot interaction time, users teach 17 new high-level behaviors with an average of 16 novel low-level skills, requiring 22.1% less active supervision compared to baselines and yielding more complex autonomous performance (+19.7%) with fewer failures (-67.1%). Qualitatively, users strongly prefer Vocal Sandbox systems due to their ease of use (+20.6%) and overall performance (+13.9%). Finally, we pair an experienced system-user with a robot to film a stop-motion animation; over two hours of continuous collaboration, the user teaches progressively more complex motion skills to shoot a 52 second (232 frame) movie.
Graph Neural Networks (GNNs) have been shown to be effective models for different predictive tasks on graph-structured data. Recent work on their expressive power has focused on isomorphism tasks and countable feature spaces. We extend this theoretical framework to include continuous features - which occur regularly in real-world input domains and within the hidden layers of GNNs - and we demonstrate the requirement for multiple aggregation functions in this context. Accordingly, we propose Principal Neighbourhood Aggregation (PNA), a novel architecture combining multiple aggregators with degree-scalers (which generalize the sum aggregator). Finally, we compare the capacity of different models to capture and exploit the graph structure via a novel benchmark containing multiple tasks taken from classical graph theory, alongside existing benchmarks from real-world domains, all of which demonstrate the strength of our model. With this work, we hope to steer some of the GNN research towards new aggregation methods which we believe are essential in the search for powerful and robust models.