亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum-classical molecular dynamics, as a partial classical limit of the full quantum Schr\"odinger equation, is a widely used framework for quantum molecular dynamics. The underlying equations are nonlinear in nature, containing a quantum part (represents the electrons) and a classical part (stands for the nuclei). An accurate simulation of the wave function typically requires a time step comparable to the rescaled Planck constant $h$, resulting in a formidable cost when $h\ll 1$. We prove an additive observable error bound of Schwartz observables for the proposed time-splitting schemes based on semiclassical analysis, which decreases as $h$ becomes smaller. Furthermore, we establish a uniform-in-$h$ observable error bound, which allows an $\mathcal{O}(1)$ time step to accurately capture the physical observable regardless of the size of $h$. Numerical results verify our estimates.

相關內容

In this paper, we address the problem of constructing $C^2$ cubic spline functions on a given arbitrary triangulation $\mathcal{T}$. To this end, we endow every triangle of $\mathcal{T}$ with a Wang-Shi macro-structure. The $C^2$ cubic space on such a refined triangulation has a stable dimension and optimal approximation power. Moreover, any spline function in such space can be locally built on each of the macro-triangles independently via Hermite interpolation. We provide a simplex spline basis for the space of $C^2$ cubics defined on a single macro-triangle which behaves like a Bernstein/B-spline basis over the triangle. The basis functions inherit recurrence relations and differentiation formulas from the simplex spline construction, they form a nonnegative partition of unity, they admit simple conditions for $C^2$ joins across the edges of neighboring triangles, and they enjoy a Marsden-like identity. Also, there is a single control net to facilitate control and early visualization of a spline function over the macro-triangle. Thanks to these properties, the complex geometry of the Wang-Shi macro-structure is transparent to the user. Stable global bases for the full space of $C^2$ cubics on the Wang-Shi refined triangulation $\mathcal{T}$ are deduced from the local simplex spline basis by extending the concept of minimal determining sets.

We study the problem of algorithmically optimizing the Hamiltonian $H_N$ of a spherical or Ising mixed $p$-spin glass. The maximum asymptotic value $\mathsf{OPT}$ of $H_N/N$ is characterized by a variational principle known as the Parisi formula, proved first by Talagrand and in more generality by Panchenko. Recently developed approximate message passing algorithms efficiently optimize $H_N/N$ up to a value $\mathsf{ALG}$ given by an extended Parisi formula, which minimizes over a larger space of functional order parameters. These two objectives are equal for spin glasses exhibiting a no overlap gap property. However, $\mathsf{ALG} < \mathsf{OPT}$ can also occur, and no efficient algorithm producing an objective value exceeding $\mathsf{ALG}$ is known. We prove that for mixed even $p$-spin models, no algorithm satisfying an overlap concentration property can produce an objective larger than $\mathsf{ALG}$ with non-negligible probability. This property holds for all algorithms with suitably Lipschitz dependence on the disorder coefficients of $H_N$. It encompasses natural formulations of gradient descent, approximate message passing, and Langevin dynamics run for bounded time and in particular includes the algorithms achieving $\mathsf{ALG}$ mentioned above. To prove this result, we substantially generalize the overlap gap property framework introduced by Gamarnik and Sudan to arbitrary ultrametric forbidden structures of solutions.

We consider the phase retrieval problem, in which the observer wishes to recover a $n$-dimensional real or complex signal $\mathbf{X}^\star$ from the (possibly noisy) observation of $|\mathbf{\Phi} \mathbf{X}^\star|$, in which $\mathbf{\Phi}$ is a matrix of size $m \times n$. We consider a \emph{high-dimensional} setting where $n,m \to \infty$ with $m/n = \mathcal{O}(1)$, and a large class of (possibly correlated) random matrices $\mathbf{\Phi}$ and observation channels. Spectral methods are a powerful tool to obtain approximate observations of the signal $\mathbf{X}^\star$ which can be then used as initialization for a subsequent algorithm, at a low computational cost. In this paper, we extend and unify previous results and approaches on spectral methods for the phase retrieval problem. More precisely, we combine the linearization of message-passing algorithms and the analysis of the \emph{Bethe Hessian}, a classical tool of statistical physics. Using this toolbox, we show how to derive optimal spectral methods for arbitrary channel noise and right-unitarily invariant matrix $\mathbf{\Phi}$, in an automated manner (i.e. with no optimization over any hyperparameter or preprocessing function).

In this paper, we consider an information update system where wireless sensor sends timely updates to the destination over a random blocking terahertz channel with the supply of harvested energy and reliable energy backup. The paper aims to find the optimal information updating policy that minimize the time-average weighted sum of the Age of information(AoI) and the reliable energy costs by formulating an infinite state Markov decision process(MDP). With the derivation of the monotonicity of value function on each component, the optimal information updating policy is proved to have a threshold structure. Based on this special structure, an algorithm for efficiently computing the optimal policy is proposed. Numerical results show that the optimal updating policy proposed outperforms baseline policies.

In this paper, a high-order gas-kinetic scheme is developed for the equation of radiation hydrodynamics in equilibrium-diffusion limit which describes the interaction between matter and radiation. To recover RHE, the Bhatnagar-Gross-Krook (BGK) model with modified equilibrium state is considered. In the equilibrium-diffusion limit, the time scales of radiation diffusion and hydrodynamic part are different, and it will make the time step very small for the fully explicit scheme. An implicit-explicit (IMEX) scheme is applied, in which the hydrodynamic part is treated explicitly and the radiation diffusion is treated implicitly. For the hydrodynamics part, a time dependent gas distribution function can be constructed by the integral solution of modified BGK equation, and the time dependent numerical fluxes can be obtained by taking moments of gas distribution function. For the radiation diffusion term, the nonlinear generalized minimal residual (GMRES) method is used. To achieve the temporal accuracy, a two-stage method is developed, which is an extension of two-stage method for hyperbolic conservation law. For the spatial accuracy, the multidimensional weighted essential non-oscillation (WENO) scheme is used for the spatial reconstruction. A variety of numerical tests are provided for the performance of current scheme, including the order of accuracy and robustness.

We investigate variational principles for the approximation of quantum dynamics that apply for approximation manifolds that do not have complex linear tangent spaces. The first one, dating back to McLachlan (1964) minimizes the residuum of the time-dependent Schr\"odinger equation, while the second one, originating from the lecture notes of Kramer--Saraceno (1981), imposes the stationarity of an action functional. We characterize both principles in terms of metric and a symplectic orthogonality conditions, consider their conservation properties, and derive an elementary a-posteriori error estimate. As an application, we revisit the time-dependent Hartree approximation and frozen Gaussian wave packets.

We analyse an energy minimisation problem recently proposed for modelling smectic-A liquid crystals. The optimality conditions give a coupled nonlinear system of partial differential equations, with a second-order equation for the tensor-valued nematic order parameter $\mathbf{Q}$ and a fourth-order equation for the scalar-valued smectic density variation $u$. Our two main results are a proof of the existence of solutions to the minimisation problem, and the derivation of a priori error estimates for its discretisation using the $\mathcal{C}^0$ interior penalty method. More specifically, optimal rates in the $H^1$ and $L^2$ norms are obtained for $\mathbf{Q}$, while optimal rates in a mesh-dependent norm and $L^2$ norm are obtained for $u$. Numerical experiments confirm the rates of convergence.

We consider in this paper random batch particle methods for efficiently solving the homogeneous Landau equation in plasma physics. The methods are stochastic variations of the particle methods proposed by Carrillo et al. [J. Comput. Phys.: X 7: 100066, 2020] using the random batch strategy. The collisions only take place inside the small but randomly selected batches so that the computational cost is reduced to $O(N)$ per time step. Meanwhile, our methods can preserve the conservation of mass, momentum, energy and the decay of entropy. Several numerical examples are performed to validate our methods.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

This work considers the problem of provably optimal reinforcement learning for episodic finite horizon MDPs, i.e. how an agent learns to maximize his/her long term reward in an uncertain environment. The main contribution is in providing a novel algorithm --- Variance-reduced Upper Confidence Q-learning (vUCQ) --- which enjoys a regret bound of $\widetilde{O}(\sqrt{HSAT} + H^5SA)$, where the $T$ is the number of time steps the agent acts in the MDP, $S$ is the number of states, $A$ is the number of actions, and $H$ is the (episodic) horizon time. This is the first regret bound that is both sub-linear in the model size and asymptotically optimal. The algorithm is sub-linear in that the time to achieve $\epsilon$-average regret for any constant $\epsilon$ is $O(SA)$, which is a number of samples that is far less than that required to learn any non-trivial estimate of the transition model (the transition model is specified by $O(S^2A)$ parameters). The importance of sub-linear algorithms is largely the motivation for algorithms such as $Q$-learning and other "model free" approaches. vUCQ algorithm also enjoys minimax optimal regret in the long run, matching the $\Omega(\sqrt{HSAT})$ lower bound. Variance-reduced Upper Confidence Q-learning (vUCQ) is a successive refinement method in which the algorithm reduces the variance in $Q$-value estimates and couples this estimation scheme with an upper confidence based algorithm. Technically, the coupling of both of these techniques is what leads to the algorithm enjoying both the sub-linear regret property and the asymptotically optimal regret.

北京阿比特科技有限公司