亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of algorithmically optimizing the Hamiltonian $H_N$ of a spherical or Ising mixed $p$-spin glass. The maximum asymptotic value $\mathsf{OPT}$ of $H_N/N$ is characterized by a variational principle known as the Parisi formula, proved first by Talagrand and in more generality by Panchenko. Recently developed approximate message passing algorithms efficiently optimize $H_N/N$ up to a value $\mathsf{ALG}$ given by an extended Parisi formula, which minimizes over a larger space of functional order parameters. These two objectives are equal for spin glasses exhibiting a no overlap gap property. However, $\mathsf{ALG} < \mathsf{OPT}$ can also occur, and no efficient algorithm producing an objective value exceeding $\mathsf{ALG}$ is known. We prove that for mixed even $p$-spin models, no algorithm satisfying an overlap concentration property can produce an objective larger than $\mathsf{ALG}$ with non-negligible probability. This property holds for all algorithms with suitably Lipschitz dependence on the disorder coefficients of $H_N$. It encompasses natural formulations of gradient descent, approximate message passing, and Langevin dynamics run for bounded time and in particular includes the algorithms achieving $\mathsf{ALG}$ mentioned above. To prove this result, we substantially generalize the overlap gap property framework introduced by Gamarnik and Sudan to arbitrary ultrametric forbidden structures of solutions.

相關內容

We study the problem of parameter estimation for large exchangeable interacting particle systems when a sample of discrete observations from a single particle is known. We propose a novel method based on martingale estimating functions constructed by employing the eigenvalues and eigenfunctions of the generator of the mean field limit, linearized around the (unique) invariant measure of the mean field dynamics. We then prove that our estimator is asymptotically unbiased and asymptotically normal when the number of observations and the number of particles tend to infinity, and we provide a rate of convergence towards the exact value of the parameters. Finally, we present several numerical experiments which show the accuracy of our estimator and corroborate our theoretical findings, even in the case the mean field dynamics exhibit more than one steady states.

Entropy regularization has been extensively adopted to improve the efficiency, the stability, and the convergence of algorithms in reinforcement learning. This paper analyzes both quantitatively and qualitatively the impact of entropy regularization for Mean Field Game (MFG) with learning in a finite time horizon. Our study provides a theoretical justification that entropy regularization yields time-dependent policies and, furthermore, helps stabilizing and accelerating convergence to the game equilibrium. In addition, this study leads to a policy-gradient algorithm for exploration in MFG. Under this algorithm, agents are able to learn the optimal exploration scheduling, with stable and fast convergence to the game equilibrium.

A causal query will commonly not be identifiable from observed data, in which case no estimator of the query can be contrived without further assumptions or measured variables, regardless of the amount or precision of the measurements of observed variables. However, it may still be possible to derive symbolic bounds on the query in terms of the distribution of observed variables. Bounds, numeric or symbolic, can often be more valuable than a statistical estimator derived under implausible assumptions. Symbolic bounds, however, provide a measure of uncertainty and information loss due to the lack of an identifiable estimand even in the absence of data. We develop and describe a general approach for computation of symbolic bounds and characterize a class of settings in which our method is guaranteed to provide tight valid bounds. This expands the known settings in which tight causal bounds are solutions to linear programs. We also prove that our method can provide valid and possibly informative symbolic bounds that are not guaranteed to be tight in a larger class of problems. We illustrate the use and interpretation of our algorithms in three examples in which we derive novel symbolic bounds.

We consider a standard distributed optimisation setting where $N$ machines, each holding a $d$-dimensional function $f_i$, aim to jointly minimise the sum of the functions $\sum_{i = 1}^N f_i (x)$. This problem arises naturally in large-scale distributed optimisation, where a standard solution is to apply variants of (stochastic) gradient descent. We focus on the communication complexity of this problem: our main result provides the first fully unconditional bounds on total number of bits which need to be sent and received by the $N$ machines to solve this problem under point-to-point communication, within a given error-tolerance. Specifically, we show that $\Omega( Nd \log d / N\varepsilon)$ total bits need to be communicated between the machines to find an additive $\epsilon$-approximation to the minimum of $\sum_{i = 1}^N f_i (x)$. The result holds for both deterministic and randomised algorithms, and, importantly, requires no assumptions on the algorithm structure. The lower bound is tight under certain restrictions on parameter values, and is matched within constant factors for quadratic objectives by a new variant of quantised gradient descent, which we describe and analyse. Our results bring over tools from communication complexity to distributed optimisation, which has potential for further applications.

We consider the problem of distributed online optimization, with a group of learners connected via a dynamic communication graph. The goal of the learners is to track the global minimizer of a sum of time-varying loss functions in a distributed manner. We propose a novel algorithm, termed Distributed Online Mirror Descent with Multiple Averaging Decision and Gradient Consensus (DOMD-MADGC), which is based on mirror descent but incorporates multiple consensus averaging iterations over local gradients as well as local decisions. The key idea is to allow the local learners to collect a sufficient amount of global information, which enables them to more accurately approximation the time-varying global loss, so that they can closely track the dynamic global minimizer over time. We show that the dynamic regret of DOMD-MADGC is upper bounded by the path length, which is defined as the cumulative distance between successive minimizers. The resulting bound improves upon the bounds of existing distributed online algorithms and removes the explicit dependence on $T$.

In this work we propose a batch version of the Greenkhorn algorithm for multimarginal regularized optimal transport problems. Our framework is general enough to cover, as particular cases, some existing algorithms like Sinkhorn and Greenkhorn algorithm for the bi-marginal setting, and (greedy) MultiSinkhorn for multimarginal optimal transport. We provide a complete convergence analysis, which is based on the properties of the iterative Bregman projections (IBP) method with greedy control. Global linear rate of convergence and explicit bound on the iteration complexity are obtained. When specialized to above mentioned algorithms, our results give new insights and/or improve existing ones.

It was recently shown that under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds. However, rather than the distance itself, the object of interest for applications such as generative modeling is the underlying optimal transport map. Hence, computational and statistical guarantees need to be obtained for the estimated maps themselves. In this paper, we propose the first tractable algorithm for which the statistical $L^2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation. Our method is based on solving the semi-dual formulation of optimal transport with an infinite-dimensional sum-of-squares reformulation, and leads to an algorithm which has dimension-free polynomial rates in the number of samples, with potentially exponentially dimension-dependent constants.

Theoretically, the conditional expectation of a square-integrable random variable $Y$ given a $d$-dimensional random vector $X$ can be obtained by minimizing the mean squared distance between $Y$ and $f(X)$ over all Borel measurable functions $f \colon \mathbb{R}^d \to \mathbb{R}$. However, in many applications this minimization problem cannot be solved exactly, and instead, a numerical method that computes an approximate minimum over a suitable subfamily of Borel functions has to be used. The quality of the result depends on the adequacy of the subfamily and the performance of the numerical method. In this paper, we derive an expected value representation of the minimal mean square distance which in many applications can efficiently be approximated with a standard Monte Carlo average. This enables us to provide guarantees for the accuracy of any numerical approximation of a given conditional expectation. We illustrate the method by assessing the quality of approximate conditional expectations obtained by linear, polynomial as well as neural network regression in different concrete examples.

We consider the problem of knowledge transfer when an agent is facing a series of Reinforcement Learning (RL) tasks. We introduce a novel metric between Markov Decision Processes and establish that close MDPs have close optimal value functions. Formally, the optimal value functions are Lipschitz continuous with respect to the tasks space. These theoretical results lead us to a value transfer method for Lifelong RL, which we use to build a PAC-MDP algorithm with improved convergence rate. We illustrate the benefits of the method in Lifelong RL experiments.

In this paper we study the convergence of generative adversarial networks (GANs) from the perspective of the informativeness of the gradient of the optimal discriminative function. We show that GANs without restriction on the discriminative function space commonly suffer from the problem that the gradient produced by the discriminator is uninformative to guide the generator. By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to $1$-Lipschitz, does not suffer from such a gradient uninformativeness problem. We further show in the paper that the model with a compact dual form of Wasserstein distance, where the Lipschitz condition is relaxed, also suffers from this issue. This implies the importance of Lipschitz condition and motivates us to study the general formulation of GANs with Lipschitz constraint, which leads to a new family of GANs that we call Lipschitz GANs (LGANs). We show that LGANs guarantee the existence and uniqueness of the optimal discriminative function as well as the existence of a unique Nash equilibrium. We prove that LGANs are generally capable of eliminating the gradient uninformativeness problem. According to our empirical analysis, LGANs are more stable and generate consistently higher quality samples compared with WGAN.

北京阿比特科技有限公司