亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate crop type maps are an essential source of information for monitoring yield progress at scale, projecting global crop production, and planning effective policies. To date, however, crop type maps remain challenging to create in low and middle-income countries due to a lack of ground truth labels for training machine learning models. Field surveys are the gold standard in terms of accuracy but require an often-prohibitively large amount of time, money, and statistical capacity. In recent years, street-level imagery, such as Google Street View, KartaView, and Mapillary, has become available around the world. Such imagery contains rich information about crop types grown at particular locations and times. In this work, we develop an automated system to generate crop type ground references using deep learning and Google Street View imagery. The method efficiently curates a set of street view images containing crop fields, trains a model to predict crop type by utilizing weakly-labelled images from disparate out-of-domain sources, and combines predicted labels with remote sensing time series to create a wall-to-wall crop type map. We show that, in Thailand, the resulting country-wide map of rice, cassava, maize, and sugarcane achieves an accuracy of 93%. As the availability of roadside imagery expands, our pipeline provides a way to map crop types at scale around the globe, especially in underserved smallholder regions.

相關內容

Ensemble forecasts and their combination are explored from the perspective of a probability space. Manipulating ensemble forecasts as discrete probability distributions, multi-model ensembles (MMEs) are reformulated as barycenters of these distributions. Barycenters are defined with respect to a given distance. The barycenter with respect to the L2-distance is shown to be equivalent to the pooling method. Then, the barycenter-based approach is extended to a different distance with interesting properties in the distribution space: the Wasserstein distance. Another interesting feature of the barycenter approach is the possibility to give different weights to the ensembles and so to naturally build weighted MME. As a proof of concept, the L2- and the Wasserstein-barycenters are applied to combine two models from the S2S database, namely the European Centre Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) models. The performance of the two (weighted-) MMEs are evaluated for the prediction of weekly 2m-temperature over Europe for seven winters. The weights given to the models in the barycenters are optimized with respect to two metrics, the CRPS and the proportion of skilful forecasts. These weights have an important impact on the skill of the two barycenter-based MMEs. Although the ECMWF model has an overall better performance than NCEP, the barycenter-ensembles are generally able to outperform both. However, the best MME method, but also the weights, are dependent on the metric. These results constitute a promising first implementation of this methodology before moving to combination of more models.

Flow-based generative models enjoy certain advantages in computing the data generation and the likelihood, and have recently shown competitive empirical performance. Compared to the accumulating theoretical studies on related score-based diffusion models, analysis of flow-based models, which are deterministic in both forward (data-to-noise) and reverse (noise-to-data) directions, remain sparse. In this paper, we provide a theoretical guarantee of generating data distribution by a progressive flow model, the so-called JKO flow model, which implements the Jordan-Kinderleherer-Otto (JKO) scheme in a normalizing flow network. Leveraging the exponential convergence of the proximal gradient descent (GD) in Wasserstein space, we prove the Kullback-Leibler (KL) guarantee of data generation by a JKO flow model to be $O(\varepsilon^2)$ when using $N \lesssim \log (1/\varepsilon)$ many JKO steps ($N$ Residual Blocks in the flow) where $\varepsilon $ is the error in the per-step first-order condition. The assumption on data density is merely a finite second moment, and the theory extends to data distributions without density and when there are inversion errors in the reverse process where we obtain KL-$W_2$ mixed error guarantees. The non-asymptotic convergence rate of the JKO-type $W_2$-proximal GD is proved for a general class of convex objective functionals that includes the KL divergence as a special case, which can be of independent interest.

A novel spatial autoregressive model for panel data is introduced, which incorporates multilayer networks and accounts for time-varying relationships. Moreover, the proposed approach allows the structural variance to evolve smoothly over time and enables the analysis of shock propagation in terms of time-varying spillover effects. The framework is applied to analyse the dynamics of international relationships among the G7 economies and their impact on stock market returns and volatilities. The findings underscore the substantial impact of cooperative interactions and highlight discernible disparities in network exposure across G7 nations, along with nuanced patterns in direct and indirect spillover effects.

A geometric representation for multivariate extremes, based on the shapes of scaled sample clouds in light-tailed margins and their so-called limit sets, has recently been shown to connect several existing extremal dependence concepts. However, these results are purely probabilistic, and the geometric approach itself has not been fully exploited for statistical inference. We outline a method for parametric estimation of the limit set shape, which includes a useful non/semi-parametric estimate as a pre-processing step. More fundamentally, our approach provides a new class of asymptotically-motivated statistical models for the tails of multivariate distributions, and such models can accommodate any combination of simultaneous or non-simultaneous extremes through appropriate parametric forms for the limit set shape. Extrapolation further into the tail of the distribution is possible via simulation from the fitted model. A simulation study confirms that our methodology is very competitive with existing approaches, and can successfully allow estimation of small probabilities in regions where other methods struggle. We apply the methodology to two environmental datasets, with diagnostics demonstrating a good fit.

Automated interpretation of signals yields many impressive applications from the area of affective computing and human activity recognition (HAR). In this paper we ask the question about possibility of cognitive activity recognition on the base of particular set of signals. We use recognition of the game played by the participant as a playground for exploration of the problem. We build classifier of three different games (Space Invaders, Tetris, Tower Defence) and inter-game pause. We validate classifier in the player-independent and player-dependent scenario. We discuss the improvement in the player-dependent scenario in the context of biometric person recognition. On the base of the results obtained in game classification, we consider potential applications in smart surveillance and quantified self.

It is known that the generating function associated with the enumeration of non-backtracking walks on finite graphs is a rational matrix-valued function of the parameter; such function is also closely related to graph-theoretical results such as Ihara's theorem and the zeta function on graphs. In [P. Grindrod, D. J. Higham, V. Noferini, The deformed graph Laplacian and its application to network centrality analysis, SIAM J. Matrix Anal. Appl. 39(1), 310--341, 2018], the radius of convergence of the generating function was studied for simple (i.e., undirected, unweighted and with no loops) graphs, and shown to depend on the number of cycles in the graph. In this paper, we use technologies from the theory of polynomial and rational matrices to greatly extend these results by studying the radius of convergence of the corresponding generating function for general, possibly directed and/or weighted, graphs. We give an analogous characterization of the radius of convergence for directed unweighted graphs, showing that it depends on the number of cycles in the undirectization of the graph. For weighted graphs, we provide for the first time an exact formula for the radius of convergence, improving a previous result that exhibited a lower bound. Finally, we consider also backtracking-downweighted walks on unweighted digraphs, and we prove a version of Ihara's theorem in that case.

We present a mapping algorithm to compute large-scale magnetic field maps in indoor environments with approximate Gaussian process (GP) regression. Mapping the spatial variations in the ambient magnetic field can be used for localization algorithms in indoor areas. To compute such a map, GP regression is a suitable tool because it provides predictions of the magnetic field at new locations along with uncertainty quantification. Because full GP regression has a complexity that grows cubically with the number of data points, approximations for GPs have been extensively studied. In this paper, we build on the structured kernel interpolation (SKI) framework, speeding up inference by exploiting efficient Krylov subspace methods. More specifically, we incorporate SKI with derivatives (D-SKI) into the scalar potential model for magnetic field modeling and compute both predictive mean and covariance with a complexity that is linear in the data points. In our simulations, we show that our method achieves better accuracy than current state-of-the-art methods on magnetic field maps with a growing mapping area. In our large-scale experiments, we construct magnetic field maps from up to 40000 three-dimensional magnetic field measurements in less than two minutes on a standard laptop.

We propose an augmented Lagrangian-based preconditioner to accelerate the convergence of Krylov subspace methods applied to linear systems of equations with a block three-by-three structure such as those arising from mixed finite element discretizations of the coupled Stokes-Darcy flow problem. We analyze the spectrum of the preconditioned matrix and we show how the new preconditioner can be efficiently applied. Numerical experiments are reported to illustrate the effectiveness of the preconditioner in conjunction with flexible GMRES for solving linear systems of equations arising from a 3D test problem.

Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司