Differential Dynamic Programming (DDP) is a popular technique used to generate motion for dynamic-legged robots in the recent past. However, in most cases, only the first-order partial derivatives of the underlying dynamics are used, resulting in the iLQR approach. Neglecting the second-order terms often slows down the convergence rate compared to full DDP. Multi-Shooting is another popular technique to improve robustness, especially if the dynamics are highly non-linear. In this work, we consider Multi-Shooting DDP for trajectory optimization of a bounding gait for a simplified quadruped model. As the main contribution, we develop Second-Order analytical partial derivatives of the rigid-body contact dynamics, extending our previous results for fixed/floating base models with multi-DoF joints. Finally, we show the benefits of a novel Quasi-Newton method for approximating second-order derivatives of the dynamics, leading to order-of-magnitude speedups in the convergence compared to the full DDP method.
Advanced Persistent Threat (APT) attacks are highly sophisticated and employ a multitude of advanced methods and techniques to target organizations and steal sensitive and confidential information. APT attacks consist of multiple stages and have a defined strategy, utilizing new and innovative techniques and technologies developed by hackers to evade security software monitoring. To effectively protect against APTs, detecting and predicting APT indicators with an explanation from Machine Learning (ML) prediction is crucial to reveal the characteristics of attackers lurking in the network system. Meanwhile, Federated Learning (FL) has emerged as a promising approach for building intelligent applications without compromising privacy. This is particularly important in cybersecurity, where sensitive data and high-quality labeling play a critical role in constructing effective machine learning models for detecting cyber threats. Therefore, this work proposes XFedHunter, an explainable federated learning framework for APT detection in Software-Defined Networking (SDN) leveraging local cyber threat knowledge from many training collaborators. In XFedHunter, Graph Neural Network (GNN) and Deep Learning model are utilized to reveal the malicious events effectively in the large number of normal ones in the network system. The experimental results on NF-ToN-IoT and DARPA TCE3 datasets indicate that our framework can enhance the trust and accountability of ML-based systems utilized for cybersecurity purposes without privacy leakage.
Visual Inertial Odometry (VIO) is an essential component of modern Augmented Reality (AR) applications. However, VIO only tracks the relative pose of the device, leading to drift over time. Absolute pose estimation methods infer the device's absolute pose, but their accuracy depends on the input quality. This paper introduces VIO-APR, a new framework for markerless mobile AR that combines an absolute pose regressor (APR) with a local VIO tracking system. VIO-APR uses VIO to assess the reliability of the APR and the APR to identify and compensate for VIO drift. This feedback loop results in more accurate positioning and more stable AR experiences. To evaluate VIO-APR, we created a dataset that combines camera images with ARKit's VIO system output for six indoor and outdoor scenes of various scales. Over this dataset, VIO-APR improves the median accuracy of popular APR by up to 36\% in position and 29\% in orientation, increases the percentage of frames in the high ($0.25 m, 2^{\circ}$) accuracy level by up to 112\% and reduces the percentage of frames predicted below the low ($5 m, 10^\circ$) accuracy greatly. We implement VIO-APR into a mobile AR application using Unity to demonstrate its capabilities. VIO-APR results in noticeably more accurate localization and a more stable overall experience.
Cyber-Physical Systems (CPSs) play a central role in the behavior of a wide range of autonomous physical systems such as medical devices, autonomous vehicles, and smart homes, many of which are safety-critical. CPSs are often specified iteratively as a sequence of models at different levels that can be tested via simulation systems at early stages of their development cycle. One such model is a hybrid automaton; these are used frequently for CPS applications and have the advantage of encapsulating both continuous and discrete CPS behaviors. When testing CPSs, engineers can take advantage of these models to generate test cases that target both types of these behaviors. Moreover, since these models are constructed early in the development process for CPSs, they allow test cases to be generated early in that process for those CPSs, even before simulation models of the CPSs have been designed. One challenge when testing CPSs is that these systems may operate differently even under an identically applied test scenario. In such cases, we cannot employ test oracles that use predetermined deterministic behaviors; instead, test oracles should consider sets of desired behaviors in order to determine whether the CPS has behaved appropriately. In this paper we present a test case generation technique, HYTEST, that generates test cases based on hybrid models, accompanied by appropriate test oracles, for use in testing CPSs early in their development cycle. To evaluate the effectiveness and efficiency of HYTEST, we conducted an empirical study in which we applied the technique to several CPSs and measured its ability to detect faults in those CPSs and the amount of time required to perform the testing process. The results of the study show that HYTEST was able to detect faults more effectively and efficiently than the baseline techniques we compare it to.
The robotic manipulation of Deformable Linear Objects (DLOs) is a vital and challenging task that is important in many practical applications. Classical model-based approaches to this problem require an accurate model to capture how robot motions affect the deformation of the DLO. Nowadays, data-driven models offer the best tradeoff between quality and computation time. This paper analyzes several learning-based 3D models of the DLO and proposes a new one based on the Transformer architecture that achieves superior accuracy, even on the DLOs of different lengths, thanks to the proposed scaling method. Moreover, we introduce a data augmentation technique, which improves the prediction performance of almost all considered DLO data-driven models. Thanks to this technique, even a simple Multilayer Perceptron (MLP) achieves close to state-of-the-art performance while being significantly faster to evaluate. In the experiments, we compare the performance of the learning-based 3D models of the DLO on several challenging datasets quantitatively and demonstrate their applicability in the task of shaping a DLO.
Dexterous manipulation of objects once held in hand remains a challenge. Such skills are, however, necessary for robotics to move beyond gripper-based manipulation and use all the dexterity offered by anthropomorphic robotic hands. One major challenge when manipulating an object within the hand is that fingers must move around the object while avoiding collision with other fingers or the object. Such collision-free paths must be computed in real-time, as the smallest deviation from the original plan can easily lead to collisions. We present a real-time approach to computing collision-free paths in a high-dimensional space. To guide the exploration, we learn an explicit representation of the free space, retrievable in real-time. We further combine this representation with closed-loop control via dynamical systems and sampling-based motion planning and show that the combination increases performance compared to alternatives, offering efficient search of feasible paths and real-time obstacle avoidance in a multi-fingered robotic hand.
Although Deep Reinforcement Learning (DRL) has achieved notable success in numerous robotic applications, designing a high-performing reward function remains a challenging task that often requires substantial manual input. Recently, Large Language Models (LLMs) have been extensively adopted to address tasks demanding in-depth common-sense knowledge, such as reasoning and planning. Recognizing that reward function design is also inherently linked to such knowledge, LLM offers a promising potential in this context. Motivated by this, we propose in this work a novel LLM framework with a self-refinement mechanism for automated reward function design. The framework commences with the LLM formulating an initial reward function based on natural language inputs. Then, the performance of the reward function is assessed, and the results are presented back to the LLM for guiding its self-refinement process. We examine the performance of our proposed framework through a variety of continuous robotic control tasks across three diverse robotic systems. The results indicate that our LLM-designed reward functions are able to rival or even surpass manually designed reward functions, highlighting the efficacy and applicability of our approach.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.
Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.