亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Inter-organizational business processes involve multiple independent organizations collaborating to achieve mutual interests. Process mining techniques have the potential to allow these organizations to enhance operational efficiency, improve performance, and deepen the understanding of their business based on the recorded process event data. However, inter-organizational process mining faces substantial challenges, including topical secrecy concerns: The involved organizations may not be willing to expose their own data to run mining algorithms jointly with their counterparts or third parties. In this paper, we introduce CONFINE, a novel approach that unlocks process mining on multiple actors' process event data while safeguarding the secrecy and integrity of the original records in an inter-organizational business setting. To ensure that the phases of the presented interaction protocol are secure and that the processed information is hidden from involved and external actors alike, our approach resorts to a decentralized architecture comprised of trusted applications running in Trusted Execution Environments (TEEs). We show the feasibility of our solution by showcasing its application to a healthcare scenario and evaluating our implementation in terms of memory usage and scalability on real-world event logs.

相關內容

With the capacity to capture high-order collaborative signals, Graph Neural Networks (GNNs) have emerged as powerful methods in Recommender Systems (RS). However, their efficacy often hinges on the assumption that training and testing data share the same distribution (a.k.a. IID assumption), and exhibits significant declines under distribution shifts. Distribution shifts commonly arises in RS, often attributed to the dynamic nature of user preferences or ubiquitous biases during data collection in RS. Despite its significance, researches on GNN-based recommendation against distribution shift are still sparse. To bridge this gap, we propose Distributionally Robust GNN (DR-GNN) that incorporates Distributional Robust Optimization (DRO) into the GNN-based recommendation. DR-GNN addresses two core challenges: 1) To enable DRO to cater to graph data intertwined with GNN, we reinterpret GNN as a graph smoothing regularizer, thereby facilitating the nuanced application of DRO; 2) Given the typically sparse nature of recommendation data, which might impede robust optimization, we introduce slight perturbations in the training distribution to expand its support. Notably, while DR-GNN involves complex optimization, it can be implemented easily and efficiently. Our extensive experiments validate the effectiveness of DR-GNN against three typical distribution shifts. The code is available at //github.com/WANGBohaO-jpg/DR-GNN .

In recent developments within the research community, the integration of Large Language Models (LLMs) in creating fully autonomous agents has garnered significant interest. Despite this, LLM-based agents frequently demonstrate notable shortcomings in adjusting to dynamic environments and fully grasping human needs. In this work, we introduce the problem of LLM-based human-agent collaboration for complex task-solving, exploring their synergistic potential. In addition, we propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC. This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process. We construct a human-agent collaboration dataset to train this policy model in an offline reinforcement learning environment. Our validation tests confirm the model's effectiveness. The results demonstrate that the synergistic efforts of humans and LLM-based agents significantly improve performance in complex tasks, primarily through well-planned, limited human intervention. Datasets and code are available at: //github.com/XueyangFeng/ReHAC.

Online transaction fraud presents substantial challenges to businesses and consumers, risking significant financial losses. Conventional rule-based systems struggle to keep pace with evolving fraud tactics, leading to high false positive rates and missed detections. Machine learning techniques offer a promising solution by leveraging historical data to identify fraudulent patterns. This article explores using the personalised PageRank (PPR) algorithm to capture the social dynamics of fraud by analysing relationships between financial accounts. The primary objective is to compare the performance of traditional features with the addition of PPR in fraud detection models. Results indicate that integrating PPR enhances the model's predictive power, surpassing the baseline model. Additionally, the PPR feature provides unique and valuable information, evidenced by its high feature importance score. Feature stability analysis confirms consistent feature distributions across training and test datasets.

Trained Deep Neural Network (DNN) models are considered valuable Intellectual Properties (IP) in several business models. Prevention of IP theft and unauthorized usage of such DNN models has been raised as of significant concern by industry. In this paper, we address the problem of preventing unauthorized usage of DNN models by proposing a generic and lightweight key-based model-locking scheme, which ensures that a locked model functions correctly only upon applying the correct secret key. The proposed scheme, known as Deep-Lock, utilizes S-Boxes with good security properties to encrypt each parameter of a trained DNN model with secret keys generated from a master key via a key scheduling algorithm. The resulting dense network of encrypted weights is found robust against model fine-tuning attacks. Finally, Deep-Lock does not require any intervention in the structure and training of the DNN models, making it applicable for all existing software and hardware implementations of DNN.

While effective in recommendation tasks, collaborative filtering (CF) techniques face the challenge of data sparsity. Researchers have begun leveraging contrastive learning to introduce additional self-supervised signals to address this. However, this approach often unintentionally distances the target user/item from their collaborative neighbors, limiting its efficacy. In response, we propose a solution that treats the collaborative neighbors of the anchor node as positive samples within the final objective loss function. This paper focuses on developing two unique supervised contrastive loss functions that effectively combine supervision signals with contrastive loss. We analyze our proposed loss functions through the gradient lens, demonstrating that different positive samples simultaneously influence updating the anchor node's embeddings. These samples' impact depends on their similarities to the anchor node and the negative samples. Using the graph-based collaborative filtering model as our backbone and following the same data augmentation methods as the existing contrastive learning model SGL, we effectively enhance the performance of the recommendation model. Our proposed Neighborhood-Enhanced Supervised Contrastive Loss (NESCL) model substitutes the contrastive loss function in SGL with our novel loss function, showing marked performance improvement. On three real-world datasets, Yelp2018, Gowalla, and Amazon-Book, our model surpasses the original SGL by 10.09%, 7.09%, and 35.36% on NDCG@20, respectively.

In pursuit of fairness and balanced development, recommender systems (RS) often prioritize group fairness, ensuring that specific groups maintain a minimum level of exposure over a given period. For example, RS platforms aim to ensure adequate exposure for new providers or specific categories of items according to their needs. Modern industry RS usually adopts a two-stage pipeline: stage-1 (retrieval stage) retrieves hundreds of candidates from millions of items distributed across various servers, and stage-2 (ranking stage) focuses on presenting a small-size but accurate selection from items chosen in stage-1. Existing efforts for ensuring amortized group exposures focus on stage-2, however, stage-1 is also critical for the task. Without a high-quality set of candidates, the stage-2 ranker cannot ensure the required exposure of groups. Previous fairness-aware works designed for stage-2 typically require accessing and traversing all items. In stage-1, however, millions of items are distributively stored in servers, making it infeasible to traverse all of them. How to ensure group exposures in the distributed retrieval process is a challenging question. To address this issue, we introduce a model named FairSync, which transforms the problem into a constrained distributed optimization problem. Specifically, FairSync resolves the issue by moving it to the dual space, where a central node aggregates historical fairness data into a vector and distributes it to all servers. To trade off the efficiency and accuracy, the gradient descent technique is used to periodically update the parameter of the dual vector. The experiment results on two public recommender retrieval datasets showcased that FairSync outperformed all the baselines, achieving the desired minimum level of exposures while maintaining a high level of retrieval accuracy.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司