Language serves as a vehicle for conveying thought, enabling communication among individuals. The ability to distinguish between diverse concepts, identify fairness and injustice, and comprehend a range of legal notions fundamentally relies on logical reasoning. Large Language Models (LLMs) attempt to emulate human language understanding and generation, but their competency in logical reasoning remains limited. This paper seeks to address the philosophical question: How can we effectively teach logical reasoning to LLMs while maintaining a deep understanding of the intricate relationship between language and logic? By focusing on bolstering LLMs' capabilities in logical reasoning, we aim to expand their applicability in law and other logic-intensive disciplines. To this end, we propose a Reinforcement Learning from Logical Feedback (RLLF) approach, which serves as a potential framework for refining LLMs' reasoning capacities. Through RLLF and a revised evaluation methodology, we explore new avenues for research in this domain and contribute to the development of LLMs capable of handling complex legal reasoning tasks while acknowledging the fundamental connection between language and logic.
Although numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low-quality and noisy signals acquired from mobile electrocardiogram (ECG) sensors, such as Holter monitors. Recently, this issue has been addressed by deep 1-D convolutional neural networks (CNNs) that have achieved state-of-the-art performance levels in Holter monitors; however, they pose a high complexity level that requires special parallelized hardware setup for real-time processing. On the other hand, their performance deteriorates when a compact network configuration is used instead. This is an expected outcome as recent studies have demonstrated that the learning performance of CNNs is limited due to their strictly homogenous configuration with the sole linear neuron model. In this study, to further boost the peak detection performance along with an elegant computational efficiency, we propose 1-D Self-Organized ONNs (Self-ONNs) with generative neurons. The most crucial advantage of 1-D Self-ONNs over the ONNs is their self-organization capability that voids the need to search for the best operator set per neuron since each generative neuron has the ability to create the optimal operator during training. The experimental results over the China Physiological Signal Challenge-2020 (CPSC) dataset with more than one million ECG beats show that the proposed 1-D Self-ONNs can significantly surpass the state-of-the-art deep CNN with less computational complexity. Results demonstrate that the proposed solution achieves a 99.10% F1-score, 99.79% sensitivity, and 98.42% positive predictivity in the CPSC dataset, which is the best R-peak detection performance ever achieved.
Pedestrian intention prediction is crucial for autonomous driving. In particular, knowing if pedestrians are going to cross in front of the ego-vehicle is core to performing safe and comfortable maneuvers. Creating accurate and fast models that predict such intentions from sequential images is challenging. A factor contributing to this is the lack of datasets with diverse crossing and non-crossing (C/NC) scenarios. We address this scarceness by introducing a framework, named ARCANE, which allows programmatically generating synthetic datasets consisting of C/NC video clip samples. As an example, we use ARCANE to generate a large and diverse dataset named PedSynth. We will show how PedSynth complements widely used real-world datasets such as JAAD and PIE, so enabling more accurate models for C/NC prediction. Considering the onboard deployment of C/NC prediction models, we also propose a deep model named PedGNN, which is fast and has a very low memory footprint. PedGNN is based on a GNN-GRU architecture that takes a sequence of pedestrian skeletons as input to predict crossing intentions.
Recent code large language models (LLMs) have shown promising performance in generating standalone functions but face limitations in repository-level code generation due to their lack of awareness of repository-level dependencies (e.g., user-defined attributes), resulting in dependency errors such as undefined-variable and no-member errors. In this work, we introduce ToolGen, an approach that integrates autocompletion tools into the code LLM generation process to address these dependencies. ToolGen comprises two main phases: Data Augmentation and Model Fine-tuning (Offline), and Tool-integrated Code Generation (Online). During the offline phase, ToolGen augments functions within a given code corpus with a special mark token, indicating positions to trigger autocompletion tools. These augmented functions, along with their corresponding docstrings, are then used to fine-tune a selected code LLM. In the online phase, ToolGen iteratively generates functions by predicting tokens step-by-step using the fine-tuned LLM. Whenever a mark token is encountered, ToolGen invokes the autocompletion tool to suggest code completions and selects the most appropriate one. We conduct comprehensive experiments to evaluate ToolGen's effectiveness in repository-level code generation. To facilitate this evaluation, we create a benchmark comprising 680 real-world code repositories and introduce two new repository-level metrics: Dependency Coverage and Success Rate. The results demonstrate that ToolGen significantly improves dependency coverage by 15.2% to 45.8% and success rates by 10.9% to 42.2% across three distinct code LLMs, while maintaining competitive performance in widely-recognized similarity metrics. Furthermore, our generalizability evaluation confirms ToolGen's consistent performance when applied to diverse code LLMs, including various model architectures and scales.
Inspired by the remarkable success of large neural networks, there has been significant interest in understanding the generalization performance of over-parameterized models. Substantial efforts have been invested in characterizing how optimization algorithms impact generalization through their "preferred" solutions, a phenomenon commonly referred to as implicit regularization. In particular, it has been argued that gradient descent (GD) induces an implicit $\ell_2$-norm regularization in regression and classification problems. However, the implicit regularization of different algorithms are confined to either a specific geometry or a particular class of learning problems, indicating a gap in a general approach for controlling the implicit regularization. To address this, we present a unified approach using mirror descent (MD), a notable generalization of GD, to control implicit regularization in both regression and classification settings. More specifically, we show that MD with the general class of homogeneous potential functions converges in direction to a generalized maximum-margin solution for linear classification problems, thereby answering a long-standing question in the classification setting. Further, we show that MD can be implemented efficiently and enjoys fast convergence under suitable conditions. Through comprehensive experiments, we demonstrate that MD is a versatile method to produce learned models with different regularizers, which in turn have different generalization performances.
Early warning for epilepsy patients is crucial for their safety and well-being, in particular to prevent or minimize the severity of seizures. Through the patients' EEG data, we propose a meta learning framework to improve the prediction of early ictal signals. The proposed bi-level optimization framework can help automatically label noisy data at the early ictal stage, as well as optimize the training accuracy of the backbone model. To validate our approach, we conduct a series of experiments to predict seizure onset in various long-term windows, with LSTM and ResNet implemented as the baseline models. Our study demonstrates that not only the ictal prediction accuracy obtained by meta learning is significantly improved, but also the resulting model captures some intrinsic patterns of the noisy data that a single backbone model could not learn. As a result, the predicted probability generated by the meta network serves as a highly effective early warning indicator.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.