The Graphical House Allocation problem asks: how can $n$ houses (each with a fixed non-negative value) be assigned to the vertices of an undirected graph $G$, so as to minimize the "aggregate local envy", i.e., the sum of absolute differences along the edges of $G$? This problem generalizes the classical Minimum Linear Arrangement problem, as well as the well-known House Allocation Problem from Economics, the latter of which has notable practical applications in organ exchanges. Recent work has studied the computational aspects of Graphical House Allocation and observed that the problem is NP-hard and inapproximable even on particularly simple classes of graphs, such as vertex disjoint unions of paths. However, the dependence of any approximations on the structural properties of the underlying graph had not been studied. In this work, we give a complete characterization of the approximability of the Graphical House Allocation problem. We present algorithms to approximate the optimal envy on general graphs, trees, planar graphs, bounded-degree graphs, bounded-degree planar graphs, and bounded-degree trees. For each of these graph classes, we then prove matching lower bounds, showing that in each case, no significant improvement can be attained unless P = NP. We also present general approximation ratios as a function of structural parameters of the underlying graph, such as treewidth; these match the aforementioned tight upper bounds in general, and are significantly better approximations for many natural subclasses of graphs. Finally, we present constant factor approximation schemes for the special classes of complete binary trees and random graphs.
Despite the success of Siamese encoder models such as sentence transformers (ST), little is known about the aspects of inputs they pay attention to. A barrier is that their predictions cannot be attributed to individual features, as they compare two inputs rather than processing a single one. This paper derives a local attribution method for Siamese encoders by generalizing the principle of integrated gradients to models with multiple inputs. The solution takes the form of feature-pair attributions, and can be reduced to a token-token matrix for STs. Our method involves the introduction of integrated Jacobians and inherits the advantageous formal properties of integrated gradients: it accounts for the model's full computation graph and is guaranteed to converge to the actual prediction. A pilot study shows that in an ST few token-pairs can often explain large fractions of predictions, and it focuses on nouns and verbs. For accurate predictions, it however needs to attend to the majority of tokens and parts of speech.
Graph Neural Networks (GNNs) have become the de-facto standard tool for modeling relational data. However, while many real-world graphs are directed, the majority of today's GNN models discard this information altogether by simply making the graph undirected. The reasons for this are historical: 1) many early variants of spectral GNNs explicitly required undirected graphs, and 2) the first benchmarks on homophilic graphs did not find significant gain from using direction. In this paper, we show that in heterophilic settings, treating the graph as directed increases the effective homophily of the graph, suggesting a potential gain from the correct use of directionality information. To this end, we introduce Directed Graph Neural Network (Dir-GNN), a novel general framework for deep learning on directed graphs. Dir-GNN can be used to extend any Message Passing Neural Network (MPNN) to account for edge directionality information by performing separate aggregations of the incoming and outgoing edges. We prove that Dir-GNN matches the expressivity of the Directed Weisfeiler-Lehman test, exceeding that of conventional MPNNs. In extensive experiments, we validate that while our framework leaves performance unchanged on homophilic datasets, it leads to large gains over base models such as GCN, GAT and GraphSage on heterophilic benchmarks, outperforming much more complex methods and achieving new state-of-the-art results.
Solving the AI alignment problem requires having clear, defensible values towards which AI systems can align. Currently, targets for alignment remain underspecified and do not seem to be built from a philosophically robust structure. We begin the discussion of this problem by presenting five core, foundational values, drawn from moral philosophy and built on the requisites for human existence: survival, sustainable intergenerational existence, society, education, and truth. We show that these values not only provide a clearer direction for technical alignment work, but also serve as a framework to highlight threats and opportunities from AI systems to both obtain and sustain these values.
We focus on a simple, one-dimensional collective decision problem (often referred to as the facility location problem) and explore issues of strategyproofness and proportionality-based fairness. We introduce and analyze a hierarchy of proportionality-based fairness axioms of varying strength: Individual Fair Share (IFS), Unanimous Fair Share (UFS), Proportionality (as in Freeman et al, 2021), and Proportional Fairness (PF). For each axiom, we characterize the family of mechanisms that satisfy the axiom and strategyproofness. We show that imposing strategyproofness renders many of the axioms to be equivalent: the family of mechanisms that satisfy proportionality, unanimity, and strategyproofness is equivalent to the family of mechanisms that satisfy UFS and strategyproofness, which, in turn, is equivalent to the family of mechanisms that satisfy PF and strategyproofness. Furthermore, there is a unique such mechanism: the Uniform Phantom mechanism, which is studied in Freeman et al. (2021). We also characterize the outcomes of the Uniform Phantom mechanism as the unique (pure) equilibrium outcome for any mechanism that satisfies continuity, strict monotonicity, and UFS. Finally, we analyze the approximation guarantees, in terms of optimal social welfare and minimum total cost, obtained by mechanisms that are strategyproof and satisfy each proportionality-based fairness axiom. We show that the Uniform Phantom mechanism provides the best approximation of the optimal social welfare (and also minimum total cost) among all mechanisms that satisfy UFS.
Differentially private algorithms protect individuals in data analysis scenarios by ensuring that there is only a weak correlation between the existence of the user in the data and the result of the analysis. Dynamic graph algorithms maintain the solution to a problem (e.g., a matching) on an evolving input, i.e., a graph where nodes or edges are inserted or deleted over time. They output the value of the solution after each update operation, i.e., continuously. We study (event-level and user-level) differentially private algorithms for graph problems under continual observation, i.e., differentially private dynamic graph algorithms. We present event-level private algorithms for partially dynamic counting-based problems such as triangle count that improve the additive error by a polynomial factor (in the length $T$ of the update sequence) on the state of the art, resulting in the first algorithms with additive error polylogarithmic in $T$. We also give $\varepsilon$-differentially private and partially dynamic algorithms for minimum spanning tree, minimum cut, densest subgraph, and maximum matching. The additive error of our improved MST algorithm is $O(W \log^{3/2}T / \varepsilon)$, where $W$ is the maximum weight of any edge, which, as we show, is tight up to a $(\sqrt{\log T} / \varepsilon)$-factor. For the other problems, we present a partially-dynamic algorithm with multiplicative error $(1+\beta)$ for any constant $\beta > 0$ and additive error $O(W \log(nW) \log(T) / (\varepsilon \beta) )$. Finally, we show that the additive error for a broad class of dynamic graph algorithms with user-level privacy must be linear in the value of the output solution's range.
Incomplete LU (ILU) smoothers are effective in the algebraic multigrid (AMG) $V$-cycle for reducing high-frequency components of the error. However, the requisite direct triangular solves are comparatively slow on GPUs. Previous work has demonstrated the advantages of Jacobi iteration as an alternative to direct solution of these systems. Depending on the threshold and fill-level parameters chosen, the factors can be highly non-normal and Jacobi is unlikely to converge in a low number of iterations. We demonstrate that row scaling can reduce the departure from normality, allowing us to replace the inherently sequential solve with a rapidly converging Richardson iteration. There are several advantages beyond the lower compute time. Scaling is performed locally for a diagonal block of the global matrix because it is applied directly to the factor. Further, an ILUT Schur complement smoother maintains a constant GMRES iteration count as the number of MPI ranks increases, and thus parallel strong-scaling is improved. Our algorithms have been incorporated into hypre, and we demonstrate improved time to solution for linear systems arising in the Nalu-Wind and PeleLM pressure solvers. For large problem sizes, GMRES$+$AMG executes at least five times faster when using iterative triangular solves compared with direct solves on massively-parallel GPUs.
While Reinforcement Learning (RL) achieves tremendous success in sequential decision-making problems of many domains, it still faces key challenges of data inefficiency and the lack of interpretability. Interestingly, many researchers have leveraged insights from the causality literature recently, bringing forth flourishing works to unify the merits of causality and address well the challenges from RL. As such, it is of great necessity and significance to collate these Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL. In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not. We further analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR). Moreover, we summarize the evaluation matrices and open sources while we discuss emerging applications, along with promising prospects for the future development of CRL.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).