In this study, we establish that deep neural networks employing ReLU and ReLU$^2$ activation functions are capable of representing Lagrange finite element functions of any order on simplicial meshes across arbitrary dimensions. We introduce a novel global formulation of the basis functions for Lagrange elements, grounded in a geometric decomposition of these elements and leveraging two essential properties of high-dimensional simplicial meshes and barycentric coordinate functions. This representation theory facilitates a natural approximation result for such deep neural networks. Our findings present the first demonstration of how deep neural networks can systematically generate general continuous piecewise polynomial functions.
We study the Gaussian statistical models whose log-likelihood function has a unique complex critical point, i.e., has maximum likelihood degree one. We exploit the connection developed by Amendola et. al. between the models having maximum likelihood degree one and homaloidal polynomials. We study the spanning tree generating function of a graph and show this polynomial is homaloidal when the graph is chordal. When the graph is a cycle on $n$ vertices, $n \geq 4$, we prove the polynomial is not homaloidal, and show that the maximum likelihood degree of the resulting model is the $n$th Eulerian number. These results support our conjecture that the spanning tree generating function is a homaloidal polynomial if and only if the graph is chordal. We also provide an algebraic formulation for the defining equations of these models. Using existing results, we provide a computational study on constructing new families of homaloidal polynomials. In the end, we analyze the symmetric determinantal representation of such polynomials and provide an upper bound on the size of the matrices involved.
Generative adversarial networks constitute a powerful approach to generative modeling. While generated samples often are indistinguishable from real data, mode-collapse may occur and there is no guarantee that they will follow the true data distribution. For scientific applications in particular, it is essential that the true distribution is well captured by the generated distribution. In this work, we propose a method to ensure that the distributions of certain generated data statistics coincide with the respective distributions of the real data. In order to achieve this, we add a new loss term to the generator loss function, which quantifies the difference between these distributions via suitable f-divergences. Kernel density estimation is employed to obtain representations of the true distributions, and to estimate the corresponding generated distributions from minibatch values at each iteration. When compared to other methods, our approach has the advantage that the complete shapes of the distributions are taken into account. We evaluate the method on a synthetic dataset and a real-world dataset and demonstrate improved performance of our approach.
We consider applications of neural networks in nonlinear system identification and formulate a hypothesis that adjusting general network structure by incorporating frequency information or other known orthogonal transform, should result in an efficient neural network retaining its universal properties. We show that such a structure is a universal approximator and that using any orthogonal transform in a proposed way implies regularization during training by adjusting the learning rate of each parameter individually. We empirically show in particular, that such a structure, using the Fourier transform, outperforms equivalent models without orthogonality support.
In many classification applications, the prediction of a deep neural network (DNN) based classifier needs to be accompanied with some confidence indication. Two popular post-processing approaches for that aim are: 1) calibration: modifying the classifier's softmax values such that their maximum (associated with the prediction) better estimates the correctness probability; and 2) conformal prediction (CP): devising a score (based on the softmax values) from which a set of predictions with theoretically guaranteed marginal coverage of the correct class is produced. While in practice both types of indications can be desired, so far the interplay between them has not been investigated. Toward filling this gap, in this paper we study the effect of temperature scaling, arguably the most common calibration technique, on prominent CP methods. We start with an extensive empirical study that among other insights shows that, surprisingly, calibration has a detrimental effect on popular adaptive CP methods: it frequently leads to larger prediction sets. Then, we turn to theoretically analyze this behavior. We reveal several mathematical properties of the procedure, according to which we provide a reasoning for the phenomenon. Our study suggests that it may be worthwhile to utilize adaptive CP methods, chosen for their enhanced conditional coverage, based on softmax values prior to (or after canceling) temperature scaling calibration.
We present a framework for learning Hamiltonian systems using data. This work is based on a lifting hypothesis, which posits that nonlinear Hamiltonian systems can be written as nonlinear systems with cubic Hamiltonians. By leveraging this, we obtain quadratic dynamics that are Hamiltonian in a transformed coordinate system. To that end, for given generalized position and momentum data, we propose a methodology to learn quadratic dynamical systems, enforcing the Hamiltonian structure in combination with a weakly-enforced symplectic auto-encoder. The obtained Hamiltonian structure exhibits long-term stability of the system, while the cubic Hamiltonian function provides relatively low model complexity. For low-dimensional data, we determine a higher-dimensional transformed coordinate system, whereas for high-dimensional data, we find a lower-dimensional coordinate system with the desired properties. We demonstrate the proposed methodology by means of both low-dimensional and high-dimensional nonlinear Hamiltonian systems.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural network's prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.