亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Collaborative inference in next-generation networks can enhance Artificial Intelligence (AI) applications, including autonomous driving, personal identification, and activity classification. This method involves a three-stage process: a) data acquisition through sensing, b) feature extraction, and c) feature encoding for transmission. Transmission of the extracted features entails the potential risk of exposing sensitive personal data. To address this issue, in this work a new privacy-protecting collaborative inference mechanism is developed. Under this mechanism, each edge device in the network protects the privacy of extracted features before transmitting them to a central server for inference. This mechanism aims to achieve two main objectives while ensuring effective inference performance: 1) reducing communication overhead, and 2) maintaining strict privacy guarantees during features transmission.

相關內容

Off-dynamics Reinforcement Learning (ODRL) seeks to transfer a policy from a source environment to a target environment characterized by distinct yet similar dynamics. In this context, traditional RL agents depend excessively on the dynamics of the source environment, resulting in the discovery of policies that excel in this environment but fail to provide reasonable performance in the target one. In the few-shot framework, a limited number of transitions from the target environment are introduced to facilitate a more effective transfer. Addressing this challenge, we propose an innovative approach inspired by recent advancements in Imitation Learning and conservative RL algorithms. The proposed method introduces a penalty to regulate the trajectories generated by the source-trained policy. We evaluate our method across various environments representing diverse off-dynamics conditions, where access to the target environment is extremely limited. These experiments include high-dimensional systems relevant to real-world applications. Across most tested scenarios, our proposed method demonstrates performance improvements compared to existing baselines.

This study introduces a novel On-the-Fly Guidance (OFG) training framework for enhancing existing learning-based image registration models, addressing the limitations of weakly-supervised and unsupervised methods. Weakly-supervised methods struggle due to the scarcity of labeled data, and unsupervised methods directly depend on image similarity metrics for accuracy. Our method proposes a supervised fashion for training registration models, without the need for any labeled data. OFG generates pseudo-ground truth during training by refining deformation predictions with a differentiable optimizer, enabling direct supervised learning. OFG optimizes deformation predictions efficiently, improving the performance of registration models without sacrificing inference speed. Our method is tested across several benchmark datasets and leading models, it significantly enhanced performance, providing a plug-and-play solution for training learning-based registration models. Code available at: //github.com/cilix-ai/on-the-fly-guidance

With the advancement of technologies like Industry 4.0, communication networks must meet stringent requirements of applications demanding deterministic and bounded latencies. The problem is further compounded by the need to periodically synchronize network devices to a common time reference to address clock drifts. Existing solutions often simplify the problem by assuming either perfect synchronization or a worst-case error. Additionally, these approaches delay the scheduling process in network devices until the scheduled frame is guaranteed to have arrived in the device queue, inducing additional delays to the stream. A novel approach that completely avoids queuing delays is proposed, enabling it to meet even the strictest deadline requirement. Furthermore, both approaches can be enhanced by incorporating network-derived time-synchronization information. This is not only convenient for meeting deadline requirements but also improves bandwidth efficiency.

Foundation models, e.g., large language models (LLMs), trained on internet-scale data possess zero-shot generalization capabilities that make them a promising technology towards detecting and mitigating out-of-distribution failure modes of robotic systems. Fully realizing this promise, however, poses two challenges: (i) mitigating the considerable computational expense of these models such that they may be applied online, and (ii) incorporating their judgement regarding potential anomalies into a safe control framework. In this work, we present a two-stage reasoning framework: First is a fast binary anomaly classifier that analyzes observations in an LLM embedding space, which may then trigger a slower fallback selection stage that utilizes the reasoning capabilities of generative LLMs. These stages correspond to branch points in a model predictive control strategy that maintains the joint feasibility of continuing along various fallback plans to account for the slow reasoner's latency as soon as an anomaly is detected, thus ensuring safety. We show that our fast anomaly classifier outperforms autoregressive reasoning with state-of-the-art GPT models, even when instantiated with relatively small language models. This enables our runtime monitor to improve the trustworthiness of dynamic robotic systems, such as quadrotors or autonomous vehicles, under resource and time constraints. Videos illustrating our approach in both simulation and real-world experiments are available on this project page: //sites.google.com/view/aesop-llm.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

We present Meena, a multi-turn open-domain chatbot trained end-to-end on data mined and filtered from public domain social media conversations. This 2.6B parameter neural network is trained to minimize perplexity, an automatic metric that we compare against human judgement of multi-turn conversation quality. To capture this judgement, we propose a human evaluation metric called Sensibleness and Specificity Average (SSA), which captures key elements of good conversation. Interestingly, our experiments show strong correlation between perplexity and SSA. The fact that the best perplexity end-to-end trained Meena scores high on SSA (72% on multi-turn evaluation) suggests that a human-level SSA of 86% is potentially within reach if we can better optimize perplexity. Additionally, the full version of Meena (with a filtering mechanism and tuned decoding) scores 79% SSA, 23% higher than the next highest scoring chatbot that we evaluated.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司