亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In 2021, Casares, Colcombet and Fijalkow introduced the Alternating Cycle Decomposition (ACD), a structure used to define optimal transformations of Muller into parity automata and to obtain theoretical results about the possibility of relabelling automata with different acceptance conditions. In this work, we study the complexity of computing the ACD and its DAG-version, proving that this can be done in polynomial time for suitable representations of the acceptance condition of the Muller automaton. As corollaries, we obtain that we can decide typeness of Muller automata in polynomial time, as well as the parity index of the languages they recognise. Furthermore, we show that we can minimise in polynomial time the number of colours (resp. Rabin pairs) defining a Muller (resp. Rabin) acceptance condition, but that these problems become NP-complete when taking into account the structure of an automaton using such a condition.

相關內容

We propose an efficient solver for the privacy funnel (PF) method, leveraging its difference-of-convex (DC) structure. The proposed DC separation results in a closed-form update equation, which allows straightforward application to both known and unknown distribution settings. For known distribution case, we prove the convergence (local stationary points) of the proposed non-greedy solver, and empirically show that it outperforms the state-of-the-art approaches in characterizing the privacy-utility trade-off. The insights of our DC approach apply to unknown distribution settings where labeled empirical samples are available instead. Leveraging the insights, our alternating minimization solver satisfies the fundamental Markov relation of PF in contrast to previous variational inference-based solvers. Empirically, we evaluate the proposed solver with MNIST and Fashion-MNIST datasets. Our results show that under a comparable reconstruction quality, an adversary suffers from higher prediction error from clustering our compressed codes than that with the compared methods. Most importantly, our solver is independent to private information in inference phase contrary to the baselines.

Automated Guided Vehicles (AGVs) are essential in various industries for their efficiency and adaptability. However, planning trajectories for AGVs in obstacle-dense, unstructured environments presents significant challenges due to the nonholonomic kinematics, abundant obstacles, and the scenario's nonconvex and constrained nature. To address this, we propose an efficient trajectory planning framework for AGVs by formulating the problem as an optimal control problem. Our framework utilizes the fast safe rectangular corridor (FSRC) algorithm to construct rectangular convex corridors, representing avoidance constraints as box constraints. This eliminates redundant obstacle influences and accelerates the solution speed. Additionally, we employ the Modified Visibility Graph algorithm to speed up path planning and a boundary discretization strategy to expedite FSRC construction. Experimental results demonstrate the effectiveness and superiority of our framework, particularly in computational efficiency. Compared to advanced frameworks, our framework achieves computational efficiency gains of 1 to 2 orders of magnitude. Notably, FSRC significantly outperforms other safe convex corridor-based methods regarding computational efficiency.

Preference-based Reinforcement Learning (PbRL) avoids the need for reward engineering by harnessing human preferences as the reward signal. However, current PbRL algorithms over-reliance on high-quality feedback from domain experts, which results in a lack of robustness. In this paper, we present RIME, a robust PbRL algorithm for effective reward learning from noisy preferences. Our method incorporates a sample selection-based discriminator to dynamically filter denoised preferences for robust training. To mitigate the accumulated error caused by incorrect selection, we propose to warm start the reward model, which additionally bridges the performance gap during transition from pre-training to online training in PbRL. Our experiments on robotic manipulation and locomotion tasks demonstrate that RIME significantly enhances the robustness of the current state-of-the-art PbRL method. Ablation studies further demonstrate that the warm start is crucial for both robustness and feedback-efficiency in limited-feedback cases.

In the abstract Tile Assembly Model, self-assembling systems consisting of tiles of different colors can form structures on which colored patterns are ``painted.'' We explore the complexity, in terms of the numbers of unique tile types required, of assembling various patterns. We first demonstrate how to efficiently self-assemble a set of simple patterns, then show tight bounds on the tile type complexity of self-assembling 2-colored patterns on the surfaces of square assemblies. Finally, we demonstrate an exponential gap in tile type complexity of self-assembling an infinite series of patterns between systems restricted to one plane versus those allowed two planes.

The Random Permutation Set (RPS) is a new type of set proposed recently, which can be regarded as the generalization of evidence theory. To measure the uncertainty of RPS, the entropy of RPS and its corresponding maximum entropy have been proposed. Exploring the maximum entropy provides a possible way of understanding the physical meaning of RPS. In this paper, a new concept, the envelope of entropy function, is defined. In addition, the limit of the envelope of RPS entropy is derived and proved. Compared with the existing method, the computational complexity of the proposed method to calculate the envelope of RPS entropy decreases greatly. The result shows that when $N \to \infty$, the limit form of the envelope of the entropy of RPS converges to $e \times (N!)^2$, which is highly connected to the constant $e$ and factorial. Finally, numerical examples validate the efficiency and conciseness of the proposed envelope, which provides a new insight into the maximum entropy function.

In the Network Revenue Management (NRM) problem, products composed of up to L resources are sold to stochastically arriving customers. We take a randomized rounding approach to NRM, motivated by developments in Online Contention Resolution Schemes (OCRS). The goal is to take a fractional solution to NRM that satisfies the resource constraints in expectation, and implement it in an online policy that satisfies the resource constraints in any state, while (approximately) preserving all of the sales that were prescribed by the fractional solution. OCRS cannot be naively applied to NRM or revenue management problems in general, because customer substitution induces a negative correlation in products being demanded. We start by deriving an OCRS that achieves a guarantee of 1/(1+L) for NRM with customer substitution, matching a common benchmark in the literature. We then show how to beat this benchmark for all integers L>1 assuming no substitution, i.e., in the standard OCRS setting. By contrast, we show that this benchmark is unbeatable using OCRS or any fractional relaxation if there is customer substitution, for all integers L that are the power of a prime number. Finally, we show how to beat 1/(1+L) even with customer substitution, if the products comprise one item from each of up to L groups. Our results have corresponding implications for Online Combinatorial Auctions, in which buyers bid for bundles of up to L items, and buyers being single-minded is akin to no substitution. Our final result also beats 1/(1+L) for Prophet Inequality on the intersection of L partition matroids. All in all, our paper provides a unifying framework for applying OCRS to these problems, delineating the impact of substitution, and establishing a separation between the guarantees achievable with vs. without substitution under general resource constraints parametrized by L.

Using Non-negative Matrix Factorization (NMF), the observed matrix can be approximated by the product of the basis and coefficient matrices. Moreover, if the coefficient vectors are explained by the covariates for each individual, the coefficient matrix can be written as the product of the parameter matrix and the covariate matrix, and additionally described in the framework of Non-negative Matrix tri-Factorization (tri-NMF) with covariates. Consequently, this is equal to the mean structure of the Growth Curve Model (GCM). The difference is that the basis matrix for GCM is given by the analyst, whereas that for NMF with covariates is unknown and optimized. In this study, we applied NMF with covariance to longitudinal data and compared it with GCM. We have also published an R package that implements this method, and we show how to use it through examples of data analyses including longitudinal measurement, spatiotemporal data and text data. In particular, we demonstrate the usefulness of Gaussian kernel functions as covariates.

Extensive efforts in the past have been directed toward the development of summarization datasets. However, a predominant number of these resources have been (semi)-automatically generated, typically through web data crawling, resulting in subpar resources for training and evaluating summarization systems, a quality compromise that is arguably due to the substantial costs associated with generating ground-truth summaries, particularly for diverse languages and specialized domains. To address this issue, we present ACLSum, a novel summarization dataset carefully crafted and evaluated by domain experts. In contrast to previous datasets, ACLSum facilitates multi-aspect summarization of scientific papers, covering challenges, approaches, and outcomes in depth. Through extensive experiments, we evaluate the quality of our resource and the performance of models based on pretrained language models and state-of-the-art large language models (LLMs). Additionally, we explore the effectiveness of extractive versus abstractive summarization within the scholarly domain on the basis of automatically discovered aspects. Our results corroborate previous findings in the general domain and indicate the general superiority of end-to-end aspect-based summarization. Our data is released at //github.com/sobamchan/aclsum.

Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success of deep neural networks in object detection, both WSOD and WSOL have received unprecedented attention. Hundreds of WSOD and WSOL methods and numerous techniques have been proposed in the deep learning era. To this end, in this paper, we consider WSOL is a sub-task of WSOD and provide a comprehensive survey of the recent achievements of WSOD. Specifically, we firstly describe the formulation and setting of the WSOD, including the background, challenges, basic framework. Meanwhile, we summarize and analyze all advanced techniques and training tricks for improving detection performance. Then, we introduce the widely-used datasets and evaluation metrics of WSOD. Lastly, we discuss the future directions of WSOD. We believe that these summaries can help pave a way for future research on WSOD and WSOL.

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司