In recent years, the task of Automatic Music Transcription (AMT), whereby various attributes of music notes are estimated from audio, has received increasing attention. At the same time, the related task of Multi-Pitch Estimation (MPE) remains a challenging but necessary component of almost all AMT approaches, even if only implicitly. In the context of AMT, pitch information is typically quantized to the nominal pitches of the Western music scale. Even in more general contexts, MPE systems typically produce pitch predictions with some degree of quantization. In certain applications of AMT, such as Guitar Tablature Transcription (GTT), it is more meaningful to estimate continuous-valued pitch contours. Guitar tablature has the capacity to represent various playing techniques, some of which involve pitch modulation. Contemporary approaches to AMT do not adequately address pitch modulation, and offer only less quantization at the expense of more model complexity. In this paper, we present a GTT formulation that estimates continuous-valued pitch contours, grouping them according to their string and fret of origin. We demonstrate that for this task, the proposed method significantly improves the resolution of MPE and simultaneously yields tablature estimation results competitive with baseline models.
Interactive analysis systems provide efficient and accessible means by which users of varying technical experience can comfortably manipulate and analyze data using interactive widgets. Widgets are elements of interaction within a user interface (e.g. scrollbar, button, etc). Interactions with these widgets produce database queries whose results determine the subsequent changes made to the current visualization made by the user. In this paper, we present a tool that extends IDEBench to ingest visualization interfaces and a dataset, and estimate the expected database load that would be generated by real users. Our tool analyzes the interactive capabilities of the visualization and creates the queries that support the various interactions. We began with a proof of concept implementation of every interaction widget, which led us to define three distinct sets of query templates that can support all interactions. We then show that these templates can be layered to imitate various interfaces and tailored to any dataset. Secondly, we simulate how users would interact with the proposed interface and report on the strain that such use would place on the database management system.
Collaborative Simultaneous Localization and Mapping (CSLAM) is a critical capability for enabling multiple robots to operate in complex environments. Most CSLAM techniques rely on the transmission of low-level features for visual and LiDAR-based approaches, which are used for pose graph optimization. However, these low-level features can lead to incorrect loop closures, negatively impacting map generation.Recent approaches have proposed the use of high-level semantic information in the form of Hierarchical Semantic Graphs to improve the loop closure procedures and overall precision of SLAM algorithms. In this work, we present Multi S-Graphs, an S-graphs [1] based distributed CSLAM algorithm that utilizes high-level semantic information for cooperative map generation while minimizing the amount of information exchanged between robots. Experimental results demonstrate the promising performance of the proposed algorithm in map generation tasks.
Real-world data can be multimodal distributed, e.g., data describing the opinion divergence in a community, the interspike interval distribution of neurons, and the oscillators natural frequencies. Generating multimodal distributed real-world data has become a challenge to existing generative adversarial networks (GANs). For example, neural stochastic differential equations (Neural SDEs), treated as infinite-dimensional GANs, have demonstrated successful performance mainly in generating unimodal time series data. In this paper, we propose a novel time series generator, named directed chain GANs (DC-GANs), which inserts a time series dataset (called a neighborhood process of the directed chain or input) into the drift and diffusion coefficients of the directed chain SDEs with distributional constraints. DC-GANs can generate new time series of the same distribution as the neighborhood process, and the neighborhood process will provide the key step in learning and generating multimodal distributed time series. The proposed DC-GANs are examined on four datasets, including two stochastic models from social sciences and computational neuroscience, and two real-world datasets on stock prices and energy consumption. To our best knowledge, DC-GANs are the first work that can generate multimodal time series data and consistently outperforms state-of-the-art benchmarks with respect to measures of distribution, data similarity, and predictive ability.
This paper is an extension of our previous conference paper. In recent years, there has been a growing interest among researchers in developing and improving speech recognition systems to facilitate and enhance human-computer interaction. Today, Automatic Speech Recognition (ASR) systems have become ubiquitous, used in everything from games to translation systems, robots, and more. However, much research is still needed on speech recognition systems for low-resource languages. This article focuses on the recognition of individual words in the Dari language using the Mel-frequency cepstral coefficients (MFCCs) feature extraction method and three different deep neural network models: Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Multilayer Perceptron (MLP), as well as two hybrid models combining CNN and RNN. We evaluate these models using an isolated Dari word corpus that we have created, consisting of 1000 utterances for 20 short Dari terms. Our study achieved an impressive average accuracy of 98.365%.
Machine learning tasks over image databases often generate masks that annotate image content (e.g., saliency maps, segmentation maps) and enable a variety of applications (e.g., determine if a model is learning spurious correlations or if an image was maliciously modified to mislead a model). While queries that retrieve examples based on mask properties are valuable to practitioners, existing systems do not support such queries efficiently. In this paper, we formalize the problem and propose a system, MaskSearch, that focuses on accelerating queries over databases of image masks. MaskSearch leverages a novel indexing technique and an efficient filter-verification query execution framework. Experiments on real-world datasets with our prototype show that MaskSearch, using indexes approximately 5% the size of the data, accelerates individual queries by up to two orders of magnitude and consistently outperforms existing methods on various multi-query workloads that simulate dataset exploration and analysis processes.
In machine learning applications, it is common practice to feed as much information as possible. In most cases, the model can handle large data sets that allow to predict more accurately. In the presence of data scarcity, a Few-Shot learning (FSL) approach aims to build more accurate algorithms with limited training data. We propose a novel end-to-end lightweight architecture that verifies biometric data by producing competitive results as compared to state-of-the-art accuracies through Few-Shot learning methods. The dense layers add to the complexity of state-of-the-art deep learning models which inhibits them to be used in low-power applications. In presented approach, a shallow network is coupled with a conventional machine learning technique that exploits hand-crafted features to verify biometric images from multi-modal sources such as signatures, periocular region, iris, face, fingerprints etc. We introduce a self-estimated threshold that strictly monitors False Acceptance Rate (FAR) while generalizing its results hence eliminating user-defined thresholds from ROC curves that are likely to be biased on local data distribution. This hybrid model benefits from few-shot learning to make up for scarcity of data in biometric use-cases. We have conducted extensive experimentation with commonly used biometric datasets. The obtained results provided an effective solution for biometric verification systems.
Speech AI Technologies are largely trained on publicly available datasets or by the massive web-crawling of speech. In both cases, data acquisition focuses on minimizing collection effort, without necessarily taking the data subjects' protection or user needs into consideration. This results to models that are not robust when used on users who deviate from the dominant demographics in the training set, discriminating individuals having different dialects, accents, speaking styles, and disfluencies. In this talk, we use automatic speech recognition as a case study and examine the properties that ethical speech datasets should possess towards responsible AI applications. We showcase diversity issues, inclusion practices, and necessary considerations that can improve trained models, while facilitating model explainability and protecting users and data subjects. We argue for the legal & privacy protection of data subjects, targeted data sampling corresponding to user demographics & needs, appropriate meta data that ensure explainability & accountability in cases of model failure, and the sociotechnical \& situated model design. We hope this talk can inspire researchers \& practitioners to design and use more human-centric datasets in speech technologies and other domains, in ways that empower and respect users, while improving machine learning models' robustness and utility.
A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.