亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Test-time adaptation (TTA) is a technique aimed at enhancing the generalization performance of models by leveraging unlabeled samples solely during prediction. Given the need for robustness in neural network systems when faced with distribution shifts, numerous TTA methods have recently been proposed. However, evaluating these methods is often done under different settings, such as varying distribution shifts, backbones, and designing scenarios, leading to a lack of consistent and fair benchmarks to validate their effectiveness. To address this issue, we present a benchmark that systematically evaluates 13 prominent TTA methods and their variants on five widely used image classification datasets: CIFAR-10-C, CIFAR-100-C, ImageNet-C, DomainNet, and Office-Home. These methods encompass a wide range of adaptation scenarios (e.g. online adaptation v.s. offline adaptation, instance adaptation v.s. batch adaptation v.s. domain adaptation). Furthermore, we explore the compatibility of different TTA methods with diverse network backbones. To implement this benchmark, we have developed a unified framework in PyTorch, which allows for consistent evaluation and comparison of the TTA methods across the different datasets and network architectures. By establishing this benchmark, we aim to provide researchers and practitioners with a reliable means of assessing and comparing the effectiveness of TTA methods in improving model robustness and generalization performance. Our code is available at //github.com/yuyongcan/Benchmark-TTA.

相關內容

圖像分類,顧名思義,是一個輸入圖像,輸出對該圖像內容分類的描述的問題。它是計算機視覺的核心,實際應用廣泛。

Neural Machine Translation (NMT) models have been shown to be vulnerable to adversarial attacks, wherein carefully crafted perturbations of the input can mislead the target model. In this paper, we introduce ACT, a novel adversarial attack framework against NMT systems guided by a classifier. In our attack, the adversary aims to craft meaning-preserving adversarial examples whose translations by the NMT model belong to a different class than the original translations in the target language. Unlike previous attacks, our new approach has a more substantial effect on the translation by altering the overall meaning, which leads to a different class determined by a classifier. To evaluate the robustness of NMT models to this attack, we propose enhancements to existing black-box word-replacement-based attacks by incorporating output translations of the target NMT model and the output logits of a classifier within the attack process. Extensive experiments in various settings, including a comparison with existing untargeted attacks, demonstrate that the proposed attack is considerably more successful in altering the class of the output translation and has more effect on the translation. This new paradigm can show the vulnerabilities of NMT systems by focusing on the class of translation rather than the mere translation quality as studied traditionally.

Segmentation and spatial alignment of ultrasound (US) imaging data acquired in the in first trimester are crucial for monitoring human embryonic growth and development throughout this crucial period of life. Current approaches are either manual or semi-automatic and are therefore very time-consuming and prone to errors. To automate these tasks, we propose a multi-atlas framework for automatic segmentation and spatial alignment of the embryo using deep learning with minimal supervision. Our framework learns to register the embryo to an atlas, which consists of the US images acquired at a range of gestational age (GA), segmented and spatially aligned to a predefined standard orientation. From this, we can derive the segmentation of the embryo and put the embryo in standard orientation. US images acquired at 8+0 till 12+6 weeks GA were used and eight subjects were selected as atlas. We evaluated different fusion strategies to incorporate multiple atlases: 1) training the framework using atlas images from a single subject, 2) training the framework with data of all available atlases and 3) ensembling of the frameworks trained per subject. To evaluate the performance, we calculated the Dice score over the test set. We found that training the framework using all available atlases outperformed ensembling and gave similar results compared to the best of all frameworks trained on a single subject. Furthermore, we found that selecting images from the four atlases closest in GA out of all available atlases, regardless of the individual quality, gave the best results with a median Dice score of 0.72. We conclude that our framework can accurately segment and spatially align the embryo in first trimester 3D US images and is robust for the variation in quality that existed in the available atlases.

The multi-armed bandit (MAB) problem is a classical problem that models sequential decision-making under uncertainty in reinforcement learning. In this study, we propose a new generalized upper confidence bound (UCB) algorithm (GWA-UCB1) by extending UCB1, which is a representative algorithm for MAB problems, using generalized weighted averages, and present an effective algorithm for various problem settings. GWA-UCB1 is a two-parameter generalization of the balance between exploration and exploitation in UCB1 and can be implemented with a simple modification of the UCB1 formula. Therefore, this algorithm can be easily applied to UCB-based reinforcement learning models. In preliminary experiments, we investigated the optimal parameters of a simple generalized UCB1 (G-UCB1), prepared for comparison and GWA-UCB1, in a stochastic MAB problem with two arms. Subsequently, we confirmed the performance of the algorithms with the investigated parameters on stochastic MAB problems when arm reward probabilities were sampled from uniform or normal distributions and on survival MAB problems assuming more realistic situations. GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at //github.com/manome/python-mab.

With the rise of foundation models, a new artificial intelligence paradigm has emerged, by simply using general purpose foundation models with prompting to solve problems instead of training a separate machine learning model for each problem. Such models have been shown to have emergent properties of solving problems that they were not initially trained on. The studies for the effectiveness of such models are still quite limited. In this work, we widely study the capabilities of the ChatGPT models, namely GPT-4 and GPT-3.5, on 13 affective computing problems, namely aspect extraction, aspect polarity classification, opinion extraction, sentiment analysis, sentiment intensity ranking, emotions intensity ranking, suicide tendency detection, toxicity detection, well-being assessment, engagement measurement, personality assessment, sarcasm detection, and subjectivity detection. We introduce a framework to evaluate the ChatGPT models on regression-based problems, such as intensity ranking problems, by modelling them as pairwise ranking classification. We compare ChatGPT against more traditional NLP methods, such as end-to-end recurrent neural networks and transformers. The results demonstrate the emergent abilities of the ChatGPT models on a wide range of affective computing problems, where GPT-3.5 and especially GPT-4 have shown strong performance on many problems, particularly the ones related to sentiment, emotions, or toxicity. The ChatGPT models fell short for problems with implicit signals, such as engagement measurement and subjectivity detection.

This article studies the derivatives in models that flexibly characterize the relationship between a response variable and multiple predictors, with goals of providing both accurate estimation and inference procedures for hypothesis testing. In the setting of tensor product reproducing spaces for nonparametric multivariate functions, we propose a plug-in kernel ridge regression estimator to estimate the derivatives of the underlying multivariate regression function under the smoothing spline ANOVA model. This estimator has an analytical form, making it simple to implement in practice. We first establish $L_\infty$ and $L_2$ convergence rates of the proposed estimator under general random designs. For derivatives with some selected interesting orders, we provide an in-depth analysis establishing the minimax lower bound, which matches the $L_2$ convergence rate. Additionally, motivated by a wide range of applications, we propose a hypothesis testing procedure to examine whether a derivative is zero. Theoretical results demonstrate that the proposed testing procedure achieves the correct size under the null hypothesis and is asymptotically powerful under local alternatives. For ease of use, we also develop an associated bootstrap algorithm to construct the rejection region and calculate the p-value, and the consistency of the proposed algorithm is established. Simulation studies using synthetic data and an application to a real-world dataset confirm the effectiveness of our methods.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

Recent years have seen important advances in the quality of state-of-the-art models, but this has come at the expense of models becoming less interpretable. This survey presents an overview of the current state of Explainable AI (XAI), considered within the domain of Natural Language Processing (NLP). We discuss the main categorization of explanations, as well as the various ways explanations can be arrived at and visualized. We detail the operations and explainability techniques currently available for generating explanations for NLP model predictions, to serve as a resource for model developers in the community. Finally, we point out the current gaps and encourage directions for future work in this important research area.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司